File size: 16,330 Bytes
c0b5fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6435505
c0b5fc9
 
 
 
 
 
6435505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0b5fc9
6435505
 
c0b5fc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import math
from typing import ClassVar, List, Optional, Tuple, Union

import torch
from PIL import Image, ImageOps
from transformers import BatchFeature, LlavaNextProcessor


def round_by_factor(number: float, factor: int) -> int:
    """Returns the closest integer to 'number' that is divisible by 'factor'."""
    return round(number / factor) * factor


def ceil_by_factor(number: float, factor: int) -> int:
    """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
    return math.ceil(number / factor) * factor


def floor_by_factor(number: float, factor: int) -> int:
    """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
    return math.floor(number / factor) * factor


class ColGraniteVisionProcessor(LlavaNextProcessor):
    """
    Processor for ColPali.
    """

    visual_prompt_prefix: ClassVar[str] = "<|user|>\n<image>\nDescribe the image.\n"
    system_message: ClassVar[
        str] = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
    query_prefix: ClassVar[str] = "Query: "
    query_start: ClassVar[str] = "<|user|>\n"

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.factor = 14
        self.min_size = 384
        self.max_size = 384 * 2
        self.suffix_len = 10
        self.patch_size = 14

    @property
    def query_augmentation_token(self) -> str:
        """
        Return the query augmentation token.
        Query augmentation buffers are used as reasoning buffers during inference.
        """
        return self.tokenizer.pad_token

    @staticmethod
    def smart_resize_helper(
            width: int,
            height: int,
            factor: int,
            min_size: int,
            max_size: int
    ) -> Tuple[int, int]:
        """
        Returns the resized image dimensions such that:
        1. The smaller dimension is set to 'min_size'.
        2. The larger dimension is scaled proportionally to maintain aspect ratio.
        3. If the larger dimension exceeds 'max_size', it is clipped to 'max_size',
        and the smaller dimension is adjusted accordingly to maintain aspect ratio.
        4. Both dimensions are divisible by 'factor'.
        """

        # Determine scale factor based on min_size
        if height < width:
            scale_factor = min_size / height
        else:
            scale_factor = min_size / width

        new_width = round(width * scale_factor)
        new_height = round(height * scale_factor)

        # If the longer dimension exceeds max_size, adjust accordingly
        if max(new_width, new_height) > max_size:
            clip_factor = max_size / max(new_width, new_height)
            new_width = round(new_width * clip_factor)
            new_height = round(new_height * clip_factor)

        # Ensure dimensions are divisible by factor
        # new_width = round_by_factor(new_width, factor)
        # new_height = round_by_factor(new_height, factor)

        return new_width, new_height

    @staticmethod
    def pad_image_center(image: Image.Image,
                         target_width: int,
                         target_height: int,
                         fill_color=(0, 0, 0)) -> Image.Image:
        """
        Pads the given image to be centered within the target dimensions.

        :param image: PIL Image to be padded.
        :param target_width: The desired width after padding.
        :param target_height: The desired height after padding.
        :param fill_color: Background color (default is black).
        :return: Padded image with centered content.
        """

        # Get original image size
        img_width, img_height = image.size

        # Compute padding values
        pad_left = (target_width - img_width) // 2
        pad_top = (target_height - img_height) // 2
        pad_right = target_width - img_width - pad_left
        pad_bottom = target_height - img_height - pad_top

        # Apply padding
        padded_image = ImageOps.expand(image, (pad_left, pad_top, pad_right, pad_bottom), fill_color).convert("RGB")

        return padded_image

    def smart_resize(self, image: Image.Image) -> Image.Image:
        """
        Resize and convert the image to the required format.
        """
        image_size = image.size
        resized_height, resized_width = self.smart_resize_helper(
            width=image_size[0],
            height=image_size[1],
            factor=self.factor,
            min_size=self.min_size,
            max_size=self.max_size
        )
        return image.convert("RGB").resize((resized_width, resized_height))

    def smart_resize_and_pad(self, image: Image.Image) -> Image.Image:
        """
        Resize and pad the image to the required format.
        """
        return self.resize_and_pad_centered_to_long_side(
            image=image,
            factor=self.factor,
            min_size=self.min_size,
            max_size=self.max_size,
            fill_color=0
        )
        
    def resize_and_pad_centered_to_long_side(
        self,
        image: Image.Image,
        factor: int,
        min_size: int,
        max_size: int,
        fill_color=0
    ) -> Image.Image:
        """
        Resizes and pads an image such that:
        - The long side is set to `max_size`.
        - The short side is scaled proportionally but not below `min_size`.
        - The image is centered within the final padded area.

        :param image: PIL Image
        :param factor: Factor to make dimensions divisible by
        :param min_size: Minimum allowed size for the short side
        :param max_size: Target size for the long side
        :param fill_color: Background padding color (default black)
        :return: Resized and padded image
        """

        # Get original size
        width, height = image.size

        if min_size == -1 or max_size == -1:
            return image.convert("RGB")

        # Step 1: scale long side to max_size, keep aspect ratio
        if width > height:
            scale_factor = max_size / width
            target_width = max_size
            max_scale_factor = max(min_size / height, scale_factor)
            target_height = round(height * max_scale_factor)
        else:
            scale_factor = max_size / height
            target_height = max_size
            max_scale_factor = max(min_size / width, scale_factor)
            target_width = round(width * max_scale_factor)

        # Resize the image
        resized_image = image.resize((target_width, target_height), Image.LANCZOS)
        final_image =resized_image.convert("RGB")

        return final_image
        
    def resize_and_pad_centered(self,
                                image: Image.Image,
                                factor: int,
                                min_size: int,
                                max_size: int,
                                fill_color=0
                                ) -> Image.Image:
        """
        Resizes and pads an image such that:
        - The short side is set to `min_size`.
        - The long side is scaled proportionally but clipped to `max_size`.
        - The image is centered within the final padded area.

        :param image: PIL Image
        :param factor: Factor to make dimensions divisible by
        :param min_size: Minimum size for the short side
        :param max_size: Maximum allowed size for the long side
        :param fill_color: Background padding color (default black)
        :return: Resized and padded image
        """

        # Get original size
        width, height = image.size

        if min_size == -1 or max_size == -1:
            return image.convert("RGB")

        # Determine scale factor based on the short side (min_size)
        if width < height:
            scale_factor = min_size / width
            target_width = min_size
            max_scale_factor = min(max_size / height, scale_factor)
            target_height = round(height * max_scale_factor)
        else:
            scale_factor = min_size / height
            target_height = min_size
            max_scale_factor = min(max_size / width, scale_factor)
            target_width = round(width * max_scale_factor)

        # Ensure the longer side does not exceed max_size
        # if max(target_width, target_height) > max_size:
        #     clip_factor = max_size / max(target_width, target_height)
        #     target_width = round(target_width * clip_factor)
        #     target_height = round(target_height * clip_factor)

        # Ensure dimensions are divisible by factor
        # target_width = round_by_factor(target_width, factor)
        # target_height = round_by_factor(target_height, factor)

        # Resize the image
        resized_image = image.resize((target_width, target_height), Image.LANCZOS)

        # Determine final padded dimensions (aligned to short side)
        if width < height:
            final_width, final_height = min_size, max_size
        else:
            final_width, final_height = max_size, min_size

        # Compute padding to center the image
        pad_left = (final_width - target_width) // 2
        pad_top = (final_height - target_height) // 2
        pad_right = final_width - target_width - pad_left
        pad_bottom = final_height - target_height - pad_top

        # Apply centered padding
        # final_image = ImageOps.expand(resized_image, (pad_left, pad_top, pad_right, pad_bottom), fill_color).convert("RGB")
        final_image = resized_image.convert("RGB")

        return final_image

    def format_data(self, question, image):
        return [
            {
                "role": "system",
                "content": [{"type": "text", "text": self.system_message}],
            },
            {
                "role": "user",
                "content": [
                    {
                        "type": "image",
                        "image": image,
                    },
                    {
                        "type": "text",
                        "text": question,
                    },
                ],
            }
        ]

    def format_data_wo_role(self, question, image=None):
        return [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image",
                        "image": image,
                    },
                    {
                        "type": "text",
                        "text": question,
                    },
                ],
            }
        ]

    def process_images(
            self,
            images: List[Image.Image],
    ) -> BatchFeature:
        """
        Process images for ColPali.
        """
        # texts_doc = [self.apply_chat_template(self.format_data_wo_role(self.visual_prompt_prefix, img),tokenize=False ) for img in images]
        texts_doc = [self.visual_prompt_prefix for _ in images]
        images = [self.smart_resize_and_pad(image) for image in images]

        batch_doc = self(
            text=texts_doc,
            images=images,
            return_tensors="pt",
            padding="longest",
        )
        return batch_doc

    def process_queries(self, queries, max_length=2048, suffix=None):
        if suffix is None:
            suffix = self.query_augmentation_token * self.suffix_len

        processed = []
        for q in queries:
            q = self.query_start + self.query_prefix + q
            # truncate before it eats actual query content
            if len(q) + len(suffix) > max_length:
                q = q[: max_length - len(suffix) - 1]
            q += suffix + "\n"
            processed.append(q)

        return self(
            text=processed,
            images=None,
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=max_length,
        )

    def score(
            self,
            qs: List[torch.Tensor],
            ps: List[torch.Tensor],
            device: Optional[Union[str, torch.device]] = None,
            **kwargs,
    ) -> torch.Tensor:
        """
        Compute the MaxSim score (ColBERT-like) for the given multi-vector query and passage embeddings.
        """
        return self.score_multi_vector(qs, ps, device=device, **kwargs)

    def get_n_patches(
            self,
            image_size: Tuple[int, int],
            patch_size: int,
    ) -> Tuple[int, int]:
        n_patches_x = self.image_processor.size["width"] // patch_size
        n_patches_y = self.image_processor.size["height"] // patch_size

        return n_patches_x, n_patches_y

    def get_image_mask(self, batch_images: BatchFeature) -> torch.Tensor:
        return batch_images.input_ids == self.image_token_id

    @staticmethod
    def score_single_vector(
            qs: List[torch.Tensor],
            ps: List[torch.Tensor],
            device: Optional[Union[str, torch.device]] = None,
    ) -> torch.Tensor:
        """
        Compute the dot product score for the given single-vector query and passage embeddings.
        """

        if len(qs) == 0:
            raise ValueError("No queries provided")
        if len(ps) == 0:
            raise ValueError("No passages provided")

        qs_stacked = torch.stack(qs).to(device)
        ps_stacked = torch.stack(ps).to(device)

        scores = torch.einsum("bd,cd->bc", qs_stacked, ps_stacked)
        assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"

        scores = scores.to(torch.float32)
        return scores

    @staticmethod
    def score_multi_vector(
            qs: Union[torch.Tensor, List[torch.Tensor]],
            ps: Union[torch.Tensor, List[torch.Tensor]],
            batch_size: int = 128,
            device: Optional[Union[str, torch.device]] = None,
    ) -> torch.Tensor:
        """
        Compute the late-interaction/MaxSim score (ColBERT-like) for the given multi-vector
        query embeddings (`qs`) and passage embeddings (`ps`). For ColPali, a passage is the
        image of a document page.

        Because the embedding tensors are multi-vector and can thus have different shapes, they
        should be fed as:
        (1) a list of tensors, where the i-th tensor is of shape (sequence_length_i, embedding_dim)
        (2) a single tensor of shape (n_passages, max_sequence_length, embedding_dim) -> usually
            obtained by padding the list of tensors.

        Args:
            qs (`Union[torch.Tensor, List[torch.Tensor]`): Query embeddings.
            ps (`Union[torch.Tensor, List[torch.Tensor]`): Passage embeddings.
            batch_size (`int`, *optional*, defaults to 128): Batch size for computing scores.
            device (`Union[str, torch.device]`, *optional*): Device to use for computation. If not
                provided, uses `get_torch_device("auto")`.

        Returns:
            `torch.Tensor`: A tensor of shape `(n_queries, n_passages)` containing the scores. The score
            tensor is saved on the "cpu" device.
        """

        if len(qs) == 0:
            raise ValueError("No queries provided")
        if len(ps) == 0:
            raise ValueError("No passages provided")

        scores_list: List[torch.Tensor] = []

        for i in range(0, len(qs), batch_size):
            scores_batch = []
            qs_batch = torch.nn.utils.rnn.pad_sequence(qs[i: i + batch_size], batch_first=True, padding_value=0).to(
                device
            )
            for j in range(0, len(ps), batch_size):
                ps_batch = torch.nn.utils.rnn.pad_sequence(
                    ps[j: j + batch_size], batch_first=True, padding_value=0
                ).to(device)
                scores_batch.append(torch.einsum("bnd,csd->bcns", qs_batch, ps_batch).max(dim=3)[0].sum(dim=2))
            scores_batch = torch.cat(scores_batch, dim=1).cpu()
            scores_list.append(scores_batch)

        scores = torch.cat(scores_list, dim=0)
        assert scores.shape[0] == len(qs), f"Expected {len(qs)} scores, got {scores.shape[0]}"

        scores = scores.to(torch.float32)
        return scores