File size: 4,167 Bytes
08f2411
0699e13
924f16b
 
a68ddb6
 
 
 
 
 
 
 
 
a24b598
 
b906bb5
8866072
 
 
 
 
c8b3371
714de30
 
67582ed
39a3beb
c8b3371
a60bde1
 
 
a24b598
593ddda
a24b598
f4c8757
 
593ddda
 
 
 
 
924f16b
 
fbbff12
4d1cc29
924f16b
2532bba
924f16b
 
08facc0
924f16b
 
 
fbbff12
924f16b
2532bba
924f16b
2532bba
 
fbbff12
 
2532bba
 
 
 
593ddda
 
 
 
 
2532bba
924f16b
 
974eb39
 
593ddda
 
 
924f16b
593ddda
924f16b
 
 
 
 
593ddda
 
 
 
 
 
 
924f16b
 
 
 
 
08facc0
924f16b
 
 
 
 
593ddda
924f16b
 
 
 
 
 
 
08facc0
924f16b
 
 
 
593ddda
924f16b
 
 
 
 
 
 
08facc0
924f16b
 
 
5b1f722
 
89dd337
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: llama2
---

## Installation from source

```bash
git clone https://github.com/foundation-model-stack/fms-extras
cd fms-extras
pip install -e .
```


## Description

This model is intended to be used as an accelerator for [llama 13B (chat)](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) and takes inspiration 
from the Medusa speculative decoding architecture. This accelerator modifies the MLP into a multi-stage MLP, where each stage predicts 
a single token in the draft based on both a state vector and sampled token
from the prior stage (the base model can be considered stage 0).
The state vector from the base model provides contextual information to the accelerator, 
while conditioning on prior sampled tokens allows it to produce higher-quality draft n-grams.

Note: The underlying MLP speculator is a generic architecture that can be trained with any generative model to accelerate inference. 
Training is light-weight and can be completed in only a few days depending on base model size and speed.

## Repository Links

1. [Paged Attention KV-Cache / Speculator](https://github.com/foundation-model-stack/fms-extras)
2. [Production Server with speculative decoding](https://github.com/IBM/text-generation-inference/pull/78)
3. [Speculator training](https://github.com/foundation-model-stack/fms-fsdp/pull/35)

## Samples

_Note: For all samples, your environment must have access to cuda_

### Production Server Sample

*To try this out running in a production-like environment, please use the pre-built docker image:*

#### Setup

```bash
docker pull quay.io/wxpe/text-gen-server:speculative-decoding.ecd73c4
docker run -d --rm --gpus all \
    --name my-tgis-server \
    -p 8033:8033 \
    -v /path/to/all/models:/models \
    -e MODEL_NAME=/models/model_weights/llama/13B-F \
    -e SPECULATOR_NAME=ibm-fms/llama-13b-accelerator \
    -e FLASH_ATTENTION=true \
    -e PAGED_ATTENTION=true \
    -e DTYPE_STR=float16 \
    quay.io/wxpe/text-gen-server:speculative-decoding.ecd73c4

# check logs and wait for "gRPC server started on port 8033" and "HTTP server started on port 3000"
docker logs my-tgis-server -f

# get the client sample (Note: The first prompt will take longer as there is a warmup time)
conda create -n tgis-client-env python=3.11
conda activate tgis-client-env
git clone --branch speculative-decoding --single-branch https://github.com/tdoublep/text-generation-inference.git
cd text-generation-inference/integration_tests
make gen-client
pip install . --no-cache-dir
```

#### Run Sample

```bash
python sample_client.py
```

_Note: first prompt may be slower as there is a slight warmup time_

### Minimal Sample

*To try this out with the fms-native compiled model, please execute the following:*

#### Install

```bash
git clone https://github.com/foundation-model-stack/fms-extras
(cd fms-extras && pip install -e .)
pip install transformers==4.35.0 sentencepiece numpy
```

#### Run Sample

##### batch_size=1 (compile + cudagraphs)

```bash
python fms-extras/scripts/paged_speculative_inference.py \
    --variant=13b \
    --model_path=/path/to/model_weights/llama/13B-F \
    --model_source=hf \
    --tokenizer=/path/to/llama/13B-F \
    --speculator_path=ibm-fms/llama-13b-accelerator \
    --speculator_source=hf \
    --compile \
    --compile_mode=reduce-overhead
```

##### batch_size=1 (compile)

```bash
python fms-extras/scripts/paged_speculative_inference.py \
    --variant=13b \
    --model_path=/path/to/model_weights/llama/13B-F \
    --model_source=hf \
    --tokenizer=/path/to/llama/13B-F \
    --speculator_path=ibm-fms/llama-13b-accelerator \
    --speculator_source=hf \
    --compile \
```

##### batch_size=4 (compile)

```bash
python fms-extras/scripts/paged_speculative_inference.py \
    --variant=13b \
    --model_path=/path/to/model_weights/llama/13B-F \
    --model_source=hf \
    --tokenizer=/path/to/llama/13B-F \
    --speculator_path=ibm-fms/llama-13b-accelerator \
    --speculator_source=hf \
    --batch_input \
    --compile \
```

Sample code can be found [here](https://github.com/foundation-model-stack/fms-extras/blob/main/scripts/paged_speculative_inference.py)