|
--- |
|
license: llama2 |
|
language: |
|
- en |
|
tags: |
|
- moe |
|
--- |
|
# Aegolius Acadicus 30B |
|
|
|
MOE 4x7b model using the Mixtral branch of the mergekit. NOT A MERGE. It is tagged as an moe and is an moe. |
|
|
|
![img](./aegolius-acadicus.png) |
|
|
|
I like to call this model "The little professor". It is simply a MOE merge of lora merged models across Llama2 and Mistral. I am using this as a test case to move to larger models and get my gate discrimination set correctly. This model is best suited for knowledge related use cases, I did not give it a specific workload target as I did with some of the other models in the "Owl Series". |
|
|
|
This model is merged from the following sources: |
|
|
|
[Westlake-7B](https://huggingface.co/senseable/Westlake-7B) |
|
[WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2) |
|
[openchat-nectar-0.5](https://huggingface.co/andysalerno/openchat-nectar-0.5) |
|
[WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) |
|
[WestSeverus-7B-DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO) |
|
|
|
Unless those models are "contaminated" this one is not. This is a proof of concept version of this series and you can find others where I am tuning my own models and using moe mergekit to combine them to make moe models that I can run on lower tier hardware with better results. |
|
|
|
The goal here is to create specialized models that can collaborate and run as one model. |
|
|
|
# Prompting |
|
|
|
## Prompt Template for alpaca style |
|
|
|
``` |
|
### Instruction: |
|
|
|
<prompt> (without the <>) |
|
|
|
### Response: |
|
``` |
|
|
|
## Sample Code |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
torch.set_default_device("cuda") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("ibivibiv/aegolius-acadicus-30b", torch_dtype="auto", device_config='auto') |
|
tokenizer = AutoTokenizer.from_pretrained("ibivibiv/aegolius-acadicus-30b") |
|
|
|
inputs = tokenizer("### Instruction: Who would when in an arm wrestling match between Abraham Lincoln and Chuck Norris?\n### Response:\n", return_tensors="pt", return_attention_mask=False) |
|
|
|
outputs = model.generate(**inputs, max_length=200) |
|
text = tokenizer.batch_decode(outputs)[0] |
|
print(text) |
|
``` |
|
|
|
# Model Details |
|
* **Trained by**: [ibivibiv](https://huggingface.co/ibivibiv) |
|
* **Library**: [HuggingFace Transformers](https://github.com/huggingface/transformers) |
|
* **Model type:** **aegolius-acadicus-30b** is an auto-regressive language model moe from Llama 2 transformer architecture models and mistral models. |
|
* **Language(s)**: English |
|
* **Purpose**: This model is an attempt at an moe model to cover multiple disciplines using finetuned llama 2 and mistral models as base models. |
|
|
|
# Benchmark Scores |
|
|
|
| Test Name | Accuracy | |
|
|------------------------------------------------------|----------------------| |
|
| all | 0.6566791267920726 | |
|
|arc:challenge | 0.7005119453924915 | |
|
|hellaswag | 0.7103166699860586 | |
|
|hendrycksTest-abstract_algebra | 0.34 | |
|
|hendrycksTest-anatomy | 0.6666666666666666 | |
|
|hendrycksTest-astronomy | 0.6907894736842105 | |
|
|hendrycksTest-business_ethics | 0.65 | |
|
|hendrycksTest-clinical_knowledge | 0.7132075471698113 | |
|
|hendrycksTest-college_biology | 0.7708333333333334 | |
|
|hendrycksTest-college_chemistry | 0.48 | |
|
|hendrycksTest-college_computer_science | 0.53 | |
|
|hendrycksTest-college_mathematics | 0.33 | |
|
|hendrycksTest-college_medicine | 0.6705202312138728 | |
|
|hendrycksTest-college_physics | 0.4019607843137255 | |
|
|hendrycksTest-computer_security | 0.77 | |
|
|hendrycksTest-conceptual_physics | 0.5787234042553191 | |
|
|hendrycksTest-econometrics | 0.5 | |
|
|hendrycksTest-electrical_engineering | 0.5517241379310345 | |
|
|hendrycksTest-elementary_mathematics | 0.42592592592592593 | |
|
|hendrycksTest-formal_logic | 0.48412698412698413 | |
|
|hendrycksTest-global_facts | 0.37 | |
|
|hendrycksTest-high_school_biology | 0.7806451612903226 | |
|
|hendrycksTest-high_school_chemistry | 0.4975369458128079 | |
|
|hendrycksTest-high_school_computer_science | 0.69 | |
|
|hendrycksTest-high_school_european_history | 0.7757575757575758 | |
|
|hendrycksTest-high_school_geography | 0.803030303030303 | |
|
|hendrycksTest-high_school_government_and_politics | 0.8963730569948186 | |
|
|hendrycksTest-high_school_macroeconomics | 0.6641025641025641 | |
|
|hendrycksTest-high_school_mathematics | 0.36666666666666664 | |
|
|hendrycksTest-high_school_microeconomics | 0.6890756302521008 | |
|
|hendrycksTest-high_school_physics | 0.37748344370860926 | |
|
|hendrycksTest-high_school_psychology | 0.8403669724770643 | |
|
|hendrycksTest-high_school_statistics | 0.5 | |
|
|hendrycksTest-high_school_us_history | 0.8480392156862745 | |
|
|hendrycksTest-high_school_world_history | 0.8059071729957806 | |
|
|hendrycksTest-human_aging | 0.6995515695067265 | |
|
|hendrycksTest-human_sexuality | 0.7938931297709924 | |
|
|hendrycksTest-international_law | 0.8099173553719008 | |
|
|hendrycksTest-jurisprudence | 0.7870370370370371 | |
|
|hendrycksTest-logical_fallacies | 0.7484662576687117 | |
|
|hendrycksTest-machine_learning | 0.4375 | |
|
|hendrycksTest-management | 0.7766990291262136 | |
|
|hendrycksTest-marketing | 0.8888888888888888 | |
|
|hendrycksTest-medical_genetics | 0.72 | |
|
|hendrycksTest-miscellaneous | 0.8314176245210728 | |
|
|hendrycksTest-moral_disputes | 0.7398843930635838 | |
|
|hendrycksTest-moral_scenarios | 0.4324022346368715 | |
|
|hendrycksTest-nutrition | 0.7189542483660131 | |
|
|hendrycksTest-philosophy | 0.7041800643086816 | |
|
|hendrycksTest-prehistory | 0.7469135802469136 | |
|
|hendrycksTest-professional_accounting | 0.5035460992907801 | |
|
|hendrycksTest-professional_law | 0.4758800521512386 | |
|
|hendrycksTest-professional_medicine | 0.6727941176470589 | |
|
|hendrycksTest-professional_psychology | 0.6666666666666666 | |
|
|hendrycksTest-public_relations | 0.6727272727272727 | |
|
|hendrycksTest-security_studies | 0.7183673469387755 | |
|
|hendrycksTest-sociology | 0.8407960199004975 | |
|
|hendrycksTest-us_foreign_policy | 0.85 | |
|
|hendrycksTest-virology | 0.5542168674698795 | |
|
|hendrycksTest-world_religions | 0.8421052631578947 | |
|
|truthfulqa:mc | 0.6707176642401714 | |
|
|winogrande | 0.8492501973164956 | |
|
|gsm8k | 0.7050796057619408 | |
|
|
|
|
|
## Citations |
|
|
|
``` |
|
@misc{open-llm-leaderboard, |
|
author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf}, |
|
title = {Open LLM Leaderboard}, |
|
year = {2023}, |
|
publisher = {Hugging Face}, |
|
howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}" |
|
} |
|
``` |
|
``` |
|
@software{eval-harness, |
|
author = {Gao, Leo and |
|
Tow, Jonathan and |
|
Biderman, Stella and |
|
Black, Sid and |
|
DiPofi, Anthony and |
|
Foster, Charles and |
|
Golding, Laurence and |
|
Hsu, Jeffrey and |
|
McDonell, Kyle and |
|
Muennighoff, Niklas and |
|
Phang, Jason and |
|
Reynolds, Laria and |
|
Tang, Eric and |
|
Thite, Anish and |
|
Wang, Ben and |
|
Wang, Kevin and |
|
Zou, Andy}, |
|
title = {A framework for few-shot language model evaluation}, |
|
month = sep, |
|
year = 2021, |
|
publisher = {Zenodo}, |
|
version = {v0.0.1}, |
|
doi = {10.5281/zenodo.5371628}, |
|
url = {https://doi.org/10.5281/zenodo.5371628} |
|
} |
|
``` |
|
``` |
|
@misc{clark2018think, |
|
title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge}, |
|
author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord}, |
|
year={2018}, |
|
eprint={1803.05457}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI} |
|
} |
|
``` |
|
``` |
|
@misc{zellers2019hellaswag, |
|
title={HellaSwag: Can a Machine Really Finish Your Sentence?}, |
|
author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi}, |
|
year={2019}, |
|
eprint={1905.07830}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
``` |
|
@misc{hendrycks2021measuring, |
|
title={Measuring Massive Multitask Language Understanding}, |
|
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, |
|
year={2021}, |
|
eprint={2009.03300}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CY} |
|
} |
|
``` |
|
``` |
|
@misc{lin2022truthfulqa, |
|
title={TruthfulQA: Measuring How Models Mimic Human Falsehoods}, |
|
author={Stephanie Lin and Jacob Hilton and Owain Evans}, |
|
year={2022}, |
|
eprint={2109.07958}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
``` |
|
@misc{DBLP:journals/corr/abs-1907-10641, |
|
title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale}, |
|
author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi}, |
|
year={2019}, |
|
eprint={1907.10641}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
``` |
|
@misc{DBLP:journals/corr/abs-2110-14168, |
|
title={Training Verifiers to Solve Math Word Problems}, |
|
author={Karl Cobbe and |
|
Vineet Kosaraju and |
|
Mohammad Bavarian and |
|
Mark Chen and |
|
Heewoo Jun and |
|
Lukasz Kaiser and |
|
Matthias Plappert and |
|
Jerry Tworek and |
|
Jacob Hilton and |
|
Reiichiro Nakano and |
|
Christopher Hesse and |
|
John Schulman}, |
|
year={2021}, |
|
eprint={2110.14168}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |