File size: 2,542 Bytes
0b06a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_longer_summarization_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_longer_summarization_model
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2700
- Rouge1: 0.4373
- Rouge2: 0.1851
- Rougel: 0.2845
- Rougelsum: 0.284
- Gen Len: 249.996
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| No log | 1.0 | 124 | 2.4805 | 0.4073 | 0.1571 | 0.2477 | 0.248 | 225.7621 |
| No log | 2.0 | 248 | 2.4026 | 0.4211 | 0.1683 | 0.2619 | 0.2617 | 228.9919 |
| No log | 3.0 | 372 | 2.3562 | 0.4247 | 0.1736 | 0.2731 | 0.273 | 243.871 |
| No log | 4.0 | 496 | 2.3316 | 0.432 | 0.1782 | 0.2774 | 0.277 | 248.7419 |
| 2.688 | 5.0 | 620 | 2.3041 | 0.4264 | 0.1744 | 0.2781 | 0.2778 | 250.8065 |
| 2.688 | 6.0 | 744 | 2.2914 | 0.4289 | 0.1781 | 0.2808 | 0.2805 | 248.375 |
| 2.688 | 7.0 | 868 | 2.2820 | 0.4305 | 0.1797 | 0.2831 | 0.2827 | 249.8871 |
| 2.688 | 8.0 | 992 | 2.2765 | 0.4337 | 0.1824 | 0.2827 | 0.2822 | 249.246 |
| 2.5114 | 9.0 | 1116 | 2.2719 | 0.4338 | 0.1819 | 0.2837 | 0.2832 | 249.379 |
| 2.5114 | 10.0 | 1240 | 2.2700 | 0.4373 | 0.1851 | 0.2845 | 0.284 | 249.996 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|