File size: 2,542 Bytes
0b06a35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_longer_summarization_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_longer_summarization_model

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2700
- Rouge1: 0.4373
- Rouge2: 0.1851
- Rougel: 0.2845
- Rougelsum: 0.284
- Gen Len: 249.996

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len  |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
| No log        | 1.0   | 124  | 2.4805          | 0.4073 | 0.1571 | 0.2477 | 0.248     | 225.7621 |
| No log        | 2.0   | 248  | 2.4026          | 0.4211 | 0.1683 | 0.2619 | 0.2617    | 228.9919 |
| No log        | 3.0   | 372  | 2.3562          | 0.4247 | 0.1736 | 0.2731 | 0.273     | 243.871  |
| No log        | 4.0   | 496  | 2.3316          | 0.432  | 0.1782 | 0.2774 | 0.277     | 248.7419 |
| 2.688         | 5.0   | 620  | 2.3041          | 0.4264 | 0.1744 | 0.2781 | 0.2778    | 250.8065 |
| 2.688         | 6.0   | 744  | 2.2914          | 0.4289 | 0.1781 | 0.2808 | 0.2805    | 248.375  |
| 2.688         | 7.0   | 868  | 2.2820          | 0.4305 | 0.1797 | 0.2831 | 0.2827    | 249.8871 |
| 2.688         | 8.0   | 992  | 2.2765          | 0.4337 | 0.1824 | 0.2827 | 0.2822    | 249.246  |
| 2.5114        | 9.0   | 1116 | 2.2719          | 0.4338 | 0.1819 | 0.2837 | 0.2832    | 249.379  |
| 2.5114        | 10.0  | 1240 | 2.2700          | 0.4373 | 0.1851 | 0.2845 | 0.284     | 249.996  |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1