File size: 11,444 Bytes
a12a6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522e605
 
a12a6ae
522e605
 
a12a6ae
522e605
 
 
 
 
 
 
 
 
a12a6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522e605
 
a12a6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f55d8a
a12a6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522e605
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a12a6ae
 
 
 
 
 
 
 
 
 
522e605
a12a6ae
522e605
 
 
 
 
 
 
 
 
 
 
 
 
a12a6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- imvladikon/nemo_corpus
metrics:
- precision
- recall
- f1
widget:
- text: >-
    אלי ויזל, פרופסור ב אוניברסיטת בוסטון, ש סילבר התאמץ הרבה למען זכייתו ב פרס
    נובל ל שלום, תמך בגלוי ב מועמדותו ל משרת ה מושל.
- text: >-
    מאמרו של תום שגב, " ה קרב על סן סימון היה או לא היה " (" ה ארץ " 105), הגיע
    ל ידי רק ב ימים אלה.
- text: >-
    רק ב דבריו של ה רב אברהם טולדאנו, משגיח ב ישיבת ה רעיון ה יהודי ו מספר 4 ב
    רשימת כך ל ה כנסת, היו כבר הוראות מעשיות: " אלוקים ייקום דמו ו אנו ניקום את
    הוא.
- text: >-
    מרכז ה מידע ל זכויות ה אדם ב ה שטחים, " בצלם ", מפרסם מ פעם ל פעם דפי מידע ו
    ב המ פרטים על ה נעשה ב ה שטחים ב תחומים שונים.
- text: >-
    גרוסבורד נהג לבדו ב ה מכונית, ב דרכו מ ה עיר מיניאפוליס ב אינדיאנה ל נמל ה
    תעופה של היא.
pipeline_tag: token-classification
model-index:
- name: SpanMarker
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: Unknown
      type: imvladikon/nemo_corpus
      split: test
    metrics:
    - type: f1
      value: 0.7757111597374179
      name: F1
    - type: precision
      value: 0.7912946428571429
      name: Precision
    - type: recall
      value: 0.7607296137339056
      name: Recall
language:
- he
---

# SpanMarker

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [imvladikon/nemo_corpus](https://huggingface.co/datasets/imvladikon/nemo_corpus) dataset that can be used for Named Entity Recognition.

## Model Details

### Model Description
- **Model Type:** SpanMarker
<!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 512 tokens
- **Maximum Entity Length:** 100 words
- **Training Dataset:** [imvladikon/nemo_corpus](https://huggingface.co/datasets/imvladikon/nemo_corpus)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label | Examples                                        |
|:------|:------------------------------------------------|
| ANG   | "יידיש", "אנגלית", "גרמנית"                     |
| DUC   | "סובארו", "מרצדס", "דינמיט"                     |
| EVE   | "מצדה", "הצהרת בלפור", "ה שואה"                 |
| FAC   | "ברזילי", "תל - ה שומר", "כלא עזה"              |
| GPE   | "שפרעם", "רצועת עזה", "ה שטחים"                 |
| LOC   | "חאן יונס", "גיבאליה", "שייח רדואן"             |
| ORG   | "ה ארץ", "מרחב ה גליל", "כך"                    |
| PER   | "נימר חוסיין", "איברהים נימר חוסיין", "רמי רהב" |
| WOA   | "ה ארץ", "קדיש", "קיטש ו מוות"                  |

## Evaluation

### Metrics
| Label   | Precision | Recall | F1     |
|:--------|:----------|:-------|:-------|
| **all** | 0.7913    | 0.7607 | 0.7757 |
| ANG     | 0.0       | 0.0    | 0.0    |
| DUC     | 0.0       | 0.0    | 0.0    |
| FAC     | 0.3571    | 0.4545 | 0.4    |
| GPE     | 0.7817    | 0.7897 | 0.7857 |
| LOC     | 0.5263    | 0.4878 | 0.5063 |
| ORG     | 0.7854    | 0.7623 | 0.7736 |
| PER     | 0.8725    | 0.8202 | 0.8456 |
| WOA     | 0.0       | 0.0    | 0.0    |

## Uses

### Direct Use for Inference

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("iahlt/span-marker-xlm-roberta-base-nemo-mt-he")
# Run inference
entities = model.predict("גרוסבורד נהג לבדו ב ה מכונית, ב דרכו מ ה עיר מיניאפוליס ב אינדיאנה ל נמל ה תעופה של היא.")
```


## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 0   | 25.7252 | 117 |
| Entities per sentence | 0   | 1.2722  | 20  |

### Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training Results
| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.4393 | 1000 | 0.0083          | 0.7632               | 0.5812            | 0.6598        | 0.9477              |
| 0.8785 | 2000 | 0.0056          | 0.8366               | 0.6774            | 0.7486        | 0.9609              |
| 1.3178 | 3000 | 0.0052          | 0.8322               | 0.7655            | 0.7975        | 0.9714              |
| 1.7571 | 4000 | 0.0053          | 0.8008               | 0.7735            | 0.7870        | 0.9712              |

### Evaluation Results

|                         |   precision |      recall |          f1 |       number |
|:------------------------|------------:|------------:|------------:|-------------:|
| eval_loss               |  0.00522302 |  0.00522302 |  0.00522302 |   0.00522302 |
| eval_ANG                |  0          |  0          |  0          |   3          |
| eval_DUC                |  0          |  0          |  0          |   2          |
| eval_EVE                |  0          |  0          |  0          |  12          |
| eval_FAC                |  0.333333   |  0.0833333  |  0.133333   |  12          |
| eval_GPE                |  0.887931   |  0.85124    |  0.869198   | 121          |
| eval_LOC                |  0.703704   |  0.678571   |  0.690909   |  28          |
| eval_ORG                |  0.719298   |  0.689076   |  0.703863   | 119          |
| eval_PER                |  0.889447   |  0.917098   |  0.903061   | 193          |
| eval_WOA                |  0          |  0          |  0          |   9          |
| eval_overall_precision  |  0.832244   |  0.832244   |  0.832244   |   0.832244   |
| eval_overall_recall     |  0.765531   |  0.765531   |  0.765531   |   0.765531   |
| eval_overall_f1         |  0.797495   |  0.797495   |  0.797495   |   0.797495   |
| eval_overall_accuracy   |  0.971418   |  0.971418   |  0.971418   |   0.971418   |
| eval_runtime            | 34.3336     | 34.3336     | 34.3336     |  34.3336     |
| eval_samples_per_second | 23.505      | 23.505      | 23.505      |  23.505      |
| eval_steps_per_second   | 11.767      | 11.767      | 11.767      |  11.767      |
| epoch                   |  2          |  2          |  2          |   2          |

### Tests Results

|                         |   precision |      recall |          f1 |       number |
|:------------------------|------------:|------------:|------------:|-------------:|
| test_loss               |  0.00604774 |  0.00604774 |  0.00604774 |   0.00604774 |
| test_ANG                |  0          |  0          |  0          |   1          |
| test_DUC                |  0          |  0          |  0          |   3          |
| test_FAC                |  0.357143   |  0.454545   |  0.4        |  11          |
| test_GPE                |  0.781726   |  0.789744   |  0.785714   | 195          |
| test_LOC                |  0.526316   |  0.487805   |  0.506329   |  41          |
| test_ORG                |  0.785354   |  0.762255   |  0.773632   | 408          |
| test_PER                |  0.87251    |  0.820225   |  0.84556    | 267          |
| test_WOA                |  0          |  0          |  0          |   6          |
| test_overall_precision  |  0.791295   |  0.791295   |  0.791295   |   0.791295   |
| test_overall_recall     |  0.76073    |  0.76073    |  0.76073    |   0.76073    |
| test_overall_f1         |  0.775711   |  0.775711   |  0.775711   |   0.775711   |
| test_overall_accuracy   |  0.964642   |  0.964642   |  0.964642   |   0.964642   |
| test_runtime            | 49.5152     | 49.5152     | 49.5152     |  49.5152     |
| test_samples_per_second | 23.286      | 23.286      | 23.286      |  23.286      |
| test_steps_per_second   | 11.653      | 11.653      | 11.653      |  11.653      |
| epoch                   |  2          |  2          |  2          |   2          |

### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu118
- Datasets: 2.15.0
- Tokenizers: 0.15.0

## Citation


```
@article{10.1162/tacl_a_00404,
    author = {Bareket, Dan and Tsarfaty, Reut},
    title = "{Neural Modeling for Named Entities and Morphology (NEMO2)}",
    journal = {Transactions of the Association for Computational Linguistics},
    volume = {9},
    pages = {909-928},
    year = {2021},
    month = {09},
    abstract = "{Named Entity Recognition (NER) is a fundamental NLP task, commonly formulated as classification over a sequence of tokens. Morphologically rich languages (MRLs) pose a challenge to this basic formulation, as the boundaries of named entities do not necessarily coincide with token boundaries, rather, they respect morphological boundaries. To address NER in MRLs we then need to answer two fundamental questions, namely, what are the basic units to be labeled, and how can these units be detected and classified in realistic settings (i.e., where no gold morphology is available). We empirically investigate these questions on a novel NER benchmark, with parallel token- level and morpheme-level NER annotations, which we develop for Modern Hebrew, a morphologically rich-and-ambiguous language. Our results show that explicitly modeling morphological boundaries leads to improved NER performance, and that a novel hybrid architecture, in which NER precedes and prunes morphological decomposition, greatly outperforms the standard pipeline, where morphological decomposition strictly precedes NER, setting a new performance bar for both Hebrew NER and Hebrew morphological decomposition tasks.}",
    issn = {2307-387X},
    doi = {10.1162/tacl_a_00404},
    url = {https://doi.org/10.1162/tacl\_a\_00404},
    eprint = {https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl\_a\_00404/1962472/tacl\_a\_00404.pdf},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->