File size: 21,729 Bytes
cca9b7e
 
 
908ff76
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
908ff76
cca9b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
import gradio as gr
import argparse
import torch
from torch import cuda
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from torchvision import transforms
from PIL import Image
import skimage.morphology, skimage.io
import cv2
import numpy as np
import random
from transformers import StoppingCriteria, StoppingCriteriaList
from copy import deepcopy
from medomni.common.config import Config
from medomni.common.dist_utils import get_rank
from medomni.common.registry import registry
import torchio as tio
import nibabel as nib
from scipy import ndimage, misc
import time
import ipdb

# Function to parse command line arguments
def parse_args():
    parser = argparse.ArgumentParser(description="Demo")
    parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair in xxx=yyy format will be merged into config file (deprecate), change to --cfg-options instead.",
    )
    args = parser.parse_args()
    return args

device = 'cuda' if cuda.is_available() else 'cpu'
# Launch model
args = parse_args()
cfg = Config(args)

model_config = cfg.model_cfg
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_pretrained('hyzhou/MedVersa').to(device).eval()
global global_images
global_images = None

def seg_2d_process(image_path, pred_mask, img_size=224):
    image = cv2.imread(image_path[0])
    if pred_mask.sum() != 0:
        labels = skimage.morphology.label(pred_mask)
        labelCount = np.bincount(labels.ravel())
        largest_label = np.argmax(labelCount[1:]) + 1
        pred_mask[labels != largest_label] = 0
        pred_mask[labels == largest_label] = 255
        pred_mask = pred_mask.astype(np.uint8)
        contours, _ = cv2.findContours(pred_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
        if contours:
            contours = np.vstack(contours)
            binary_array = np.zeros((img_size, img_size))
            binary_array = cv2.drawContours(binary_array, contours, -1, 255, thickness=cv2.FILLED) 
            binary_array = cv2.resize(binary_array, (image.shape[1], image.shape[0]), interpolation = cv2.INTER_NEAREST) / 255
            image = [Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))]
            mask = [binary_array]
        else:
            image = [Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))]
            mask = [np.zeros((image.shape[1], image.shape[0]))]
    else:
        mask = [np.zeros((image.shape[1], image.shape[0]))]
        image = [Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))]    
    # output_image = cv2.drawContours(binary_array, contours, -1, (110, 0, 255), 2) 
    # output_image_pil = Image.fromarray(cv2.cvtColor(output_image, cv2.COLOR_BGR2RGB))
    return image, mask

def seg_3d_process(image_path, seg_mask):
    img  = nib.load(image_path[0]).get_fdata()
    image = window_scan(img).transpose(2,0,1).astype(np.uint8)
    if seg_mask.sum() != 0:
        seg_mask = resize_back_volume_abd(seg_mask, image.shape).astype(np.uint8)
        image_slices = []
        contour_slices = []
        for i in range(seg_mask.shape[0]):
            slice_img = np.fliplr(np.rot90(image[i]))
            slice_mask = np.fliplr(np.rot90(seg_mask[i]))
            contours, _ = cv2.findContours(slice_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
            image_slices.append(Image.fromarray(slice_img))
            if contours:
                binary_array = np.zeros(seg_mask.shape[1:])
                binary_array = cv2.drawContours(binary_array, contours, -1, 255, thickness=cv2.FILLED) / 255
                binary_array = cv2.resize(binary_array, slice_img.shape, interpolation = cv2.INTER_NEAREST)
                contour_slices.append(binary_array)
            else:
                contour_slices.append(np.zeros_like(slice_img))
    else:
        image_slices = []
        contour_slices = []
        slice_img = np.fliplr(np.rot90(image[i]))
        image_slices.append(Image.fromarray(slice_img))
        contour_slices.append(np.zeros_like(slice_img))

    return image_slices, contour_slices

def det_2d_process(image_path, box):
    image_slices = []
    image = cv2.imread(image_path[0])
    if box is not None:
        hi,wd,_ = image.shape
        color = tuple(np.random.random(size=3) * 256)
        x1, y1, x2, y2 = int(box[0]*wd), int(box[1]*hi), int(box[2]*wd), int(box[3]*hi)
        image = cv2.rectangle(image, (x1, y1), (x2, y2), color, 10)
    image_slices.append(Image.fromarray(image))
    return image_slices

def window_scan(scan, window_center=50, window_width=400):
    """
    Apply windowing to a scan.

    Parameters:
    scan (numpy.ndarray): 3D numpy array of the CT scan
    window_center (int): The center of the window
    window_width (int): The width of the window

    Returns:
    numpy.ndarray: Windowed CT scan
    """
    lower_bound = window_center - (window_width // 2)
    upper_bound = window_center + (window_width // 2)
    
    windowed_scan = np.clip(scan, lower_bound, upper_bound)
    windowed_scan = (windowed_scan - lower_bound) / (upper_bound - lower_bound)
    windowed_scan = (windowed_scan * 255).astype(np.uint8)
    
    return windowed_scan

def task_seg_2d(model, preds, hidden_states, image):
    token_mask = preds == model.seg_token_idx_2d  
    indices = torch.where(token_mask == True)[0].cpu().numpy()
    feats = model.model_seg_2d.encoder(image.unsqueeze(0)[:, 0])
    last_feats = feats[-1]
    target_states = [hidden_states[ind][-1] for ind in indices]
    if target_states:
        target_states = torch.cat(target_states).squeeze()
        seg_states = model.text2seg_2d(target_states).unsqueeze(0)
        last_feats = last_feats + seg_states.unsqueeze(-1).unsqueeze(-1)
        last_feats = model.text2seg_2d_gn(last_feats)
        feats[-1] = last_feats
        seg_feats = model.model_seg_2d.decoder(*feats)
        seg_preds = model.model_seg_2d.segmentation_head(seg_feats)
        seg_probs = F.sigmoid(seg_preds)
        seg_mask = seg_probs.to(torch.float32).cpu().squeeze().numpy() >= 0.5
        return seg_mask
    else:
        return None

def task_seg_3d(model, preds, hidden_states, img_embeds_list):
    new_img_embeds_list = deepcopy(img_embeds_list)
    token_mask = preds == model.seg_token_idx_3d  
    indices = torch.where(token_mask == True)[0].cpu().numpy()
    target_states = [hidden_states[ind][-1] for ind in indices]
    if target_states:
        target_states = torch.cat(target_states).squeeze().unsqueeze(0)
        seg_states = model.text2seg_3d(target_states)
        last_feats = new_img_embeds_list[-1]
        last_feats = last_feats + seg_states.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
        last_feats = model.text2seg_3d_gn(last_feats)
        new_img_embeds_list[-1] = last_feats
        seg_preds = model.visual_encoder_3d(encoder_only=False, x_=new_img_embeds_list)
        seg_probs = F.sigmoid(seg_preds)
        seg_mask = seg_probs.to(torch.float32).cpu().squeeze().numpy() >= 0.5
        return seg_mask

def task_det_2d(model, preds, hidden_states):
    token_mask = preds == model.det_token_idx
    indices = torch.where(token_mask == True)[0].cpu().numpy()
    target_states = [hidden_states[ind][-1] for ind in indices]
    if target_states:
        target_states = torch.cat(target_states).squeeze()
        det_states = model.text_det(target_states).detach().cpu()
        return det_states.to(torch.float32).numpy()
    return torch.zeros_like(indices)

class StoppingCriteriaSub(StoppingCriteria):
    def __init__(self, stops=[]):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop):])).item():
                return True
        return False

def resize_back_volume_abd(img, target_size):
    desired_depth = target_size[0]
    desired_width = target_size[1]
    desired_height = target_size[2]

    current_depth = img.shape[0] # [d, w, h]
    current_width = img.shape[1] 
    current_height = img.shape[2]
 
    depth = current_depth / desired_depth
    width = current_width / desired_width
    height = current_height / desired_height
    
    depth_factor = 1 / depth
    width_factor = 1 / width
    height_factor = 1 / height

    img = ndimage.zoom(img, (depth_factor, width_factor, height_factor), order=0)
    return img

def resize_volume_abd(img):
    img[img<=-200] = -200
    img[img>=300] = 300

    desired_depth = 64
    desired_width = 192
    desired_height = 192

    current_width = img.shape[0] # [w, h, d]
    current_height = img.shape[1]
    current_depth = img.shape[2]
 
    depth = current_depth / desired_depth
    width = current_width / desired_width
    height = current_height / desired_height
    
    depth_factor = 1 / depth
    width_factor = 1 / width
    height_factor = 1 / height

    img = ndimage.zoom(img, (width_factor, height_factor, depth_factor), order=0)
    return img

def load_and_preprocess_image(image):
    mean = (0.48145466, 0.4578275, 0.40821073)
    std = (0.26862954, 0.26130258, 0.27577711)
    transform = transforms.Compose([
        transforms.Resize([224, 224]),
        transforms.ToTensor(),
        transforms.Normalize(mean, std)
    ])
    image = transform(image).type(torch.bfloat16).unsqueeze(0)
    return image

def load_and_preprocess_volume(image):
    img  = nib.load(image).get_fdata()
    image = torch.from_numpy(resize_volume_abd(img)).permute(2,0,1)
    transform = tio.Compose([
        tio.ZNormalization(masking_method=tio.ZNormalization.mean),
    ])
    image = transform(image.unsqueeze(0)).type(torch.bfloat16)
    return image

def read_image(image_path):
    if image_path.endswith(('.jpg', '.jpeg', '.png')):
        return load_and_preprocess_image(Image.open(image_path).convert('RGB'))
    elif image_path.endswith('.nii.gz'):
        return load_and_preprocess_volume(image_path)
    else:
        raise ValueError("Unsupported file format")

def generate(image_path, image, context, modal, num_imgs, prompt, num_beams, do_sample, min_length, top_p, repetition_penalty, length_penalty, temperature):
    if (len(context) != 0 and ('report' in prompt or 'finding' in prompt or 'impression' in prompt)) or (len(context) != 0 and modal=='derm' and ('diagnosis' in prompt or 'issue' in prompt or 'problem' in prompt)):
        prompt = '<context>' + context + '</context>' + prompt
    if modal == 'ct' and 'segment' in prompt.lower():
        if 'liver' in prompt:
            prompt = 'Segment the liver.'
        if 'spleen' in prompt:
            prompt = 'Segment the spleen.'
        if 'kidney' in prompt:
            prompt = 'Segment the kidney.'
        if 'pancrea' in prompt:
            prompt = 'Segment the pancreas.'
    img_embeds, atts_img, img_embeds_list = model.encode_img(image.unsqueeze(0), [modal])
    placeholder = ['<ImageHere>'] * 9
    prefix = '###Human:' + ''.join([f'<img{i}>' + ''.join(placeholder) + f'</img{i}>' for i in range(num_imgs)])
    img_embeds, atts_img = model.prompt_wrap(img_embeds, atts_img, [prefix], [num_imgs])
    prompt += '###Assistant:'
    prompt_tokens = model.llama_tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(image.device)
    new_img_embeds, new_atts_img = model.prompt_concat(img_embeds, atts_img, prompt_tokens)
    
    outputs = model.llama_model.generate(
        inputs_embeds=new_img_embeds,
        max_new_tokens=450,
        stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub(stops=[
            torch.tensor([835]).type(torch.bfloat16).to(image.device),
            torch.tensor([2277, 29937]).type(torch.bfloat16).to(image.device)
        ])]),
        num_beams=num_beams,
        do_sample=do_sample,
        min_length=min_length,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        length_penalty=length_penalty,
        temperature=temperature,
        output_hidden_states=True,
        return_dict_in_generate=True,
    )
    
    hidden_states = outputs.hidden_states
    preds = outputs.sequences[0]
    output_image = None
    seg_mask_2d = None
    seg_mask_3d = None
    if sum(preds == model.seg_token_idx_2d):
        seg_mask = task_seg_2d(model, preds, hidden_states, image)
        output_image, seg_mask_2d = seg_2d_process(image_path, seg_mask)
    if sum(preds == model.seg_token_idx_3d):
        seg_mask = task_seg_3d(model, preds, hidden_states, img_embeds_list)
        output_image, seg_mask_3d = seg_3d_process(image_path, seg_mask)
    if sum(preds == model.det_token_idx):
        det_box = task_det_2d(model, preds, hidden_states)
        output_image = det_2d_process(image_path, det_box)
    
    if preds[0] == 0:  # Remove unknown token <unk> at the beginning
        preds = preds[1:]
    if preds[0] == 1:  # Remove start token <s> at the beginning
        preds = preds[1:]
    
    output_text = model.llama_tokenizer.decode(preds, add_special_tokens=False)
    output_text = output_text.split('###')[0].split('Assistant:')[-1].strip()

    if 'mel' in output_text and modal == 'derm':
        output_text = 'The main diagnosis is melanoma.'
    return output_image, seg_mask_2d, seg_mask_3d, output_text

def generate_predictions(images, context, prompt, modality, num_beams, do_sample, min_length, top_p, repetition_penalty, length_penalty, temperature):
    num_imgs = len(images)
    modal = modality.lower()
    image_tensors = [read_image(img).to(device) for img in images]
    if modality == 'ct':
        time.sleep(2)
    else:
        time.sleep(1)
    image_tensor = torch.cat(image_tensors)
    
    with torch.autocast(device):
        with torch.no_grad():
            generated_image, seg_mask_2d, seg_mask_3d, output_text = generate(images, image_tensor, context, modal, num_imgs, prompt, num_beams, do_sample, min_length, top_p, repetition_penalty, length_penalty, temperature)
    
    return generated_image, seg_mask_2d, seg_mask_3d, output_text

my_dict = {}
def gradio_interface(chatbot, images, context, prompt, modality, num_beams, do_sample, min_length, top_p, repetition_penalty, length_penalty, temperature):
    global global_images
    if not images:
        image = np.zeros((224, 224, 3), dtype=np.uint8)
        blank_image = Image.fromarray(image)
        snapshot = (blank_image, [])
        global_images = 'none'
        return [(prompt, "At least one image is required to proceed.")], snapshot, gr.update(maximum=0)
    if not prompt or not modality:
        image = np.zeros((224, 224, 3), dtype=np.uint8)
        blank_image = Image.fromarray(image)
        snapshot = (blank_image, [])
        global_images = 'none'
        return [(prompt, "Please provide prompt and modality to proceed.")], snapshot, gr.update(maximum=0)

    generated_images, seg_mask_2d, seg_mask_3d, output_text = generate_predictions(images, context, prompt, modality, num_beams, do_sample, min_length, top_p, repetition_penalty, length_penalty, temperature)
    output_images = []
    input_images = [np.asarray(Image.open(img.name).convert('RGB')).astype(np.uint8) if img.name.endswith(('.jpg', '.jpeg', '.png')) else f"{img.name} (3D Volume)" for img in images]
    if generated_images is not None:
        for generated_image in generated_images:
            output_images.append(np.asarray(generated_image).astype(np.uint8)) 
        snapshot = (output_images[0], [])
        if seg_mask_2d is not None:
            snapshot = (output_images[0], [(seg_mask_2d[0], "Mask")])
        if seg_mask_3d is not None:
            snapshot = (output_images[0], [(seg_mask_3d[0], "Mask")])
    else:
        output_images = input_images.copy()
        snapshot = (output_images[0], [])
    
    my_dict['image'] = output_images
    my_dict['mask'] = None
    if seg_mask_2d is not None:
        my_dict['mask'] = seg_mask_2d
    if seg_mask_3d is not None:
        my_dict['mask'] = seg_mask_3d
    
    if global_images != images and (global_images is not None):
        chatbot = []
        chatbot.append((prompt, output_text))
    else:
        chatbot.append((prompt, output_text))
    global_images = images

    return chatbot, snapshot, gr.update(maximum=len(output_images)-1)

def render(x):
    if x > len(my_dict['image'])-1:
        x = len(my_dict['image'])-1
    if x < 0:
        x = 0
    image = my_dict['image'][x]
    if my_dict['mask'] is None:
        return (image,[])
    else:
        mask = my_dict['mask'][x]
        value = (image,[(mask, "Mask")])
        return value

def update_context_visibility(task):
    if task == "report generation" or task == 'classification':
        return gr.update(visible=True)
    else:
        return gr.update(visible=False)

def reset_chatbot():
    return []

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    # with gr.Row():
    #     gr.Markdown("<link href='https://fonts.googleapis.com/css2?family=Libre+Franklin:wght@400;700&display=swap' rel='stylesheet'>")
    gr.Markdown("# MedVersa")
    with gr.Row():
        with gr.Column():
            image_input = gr.File(label="Upload Images", file_count="multiple", file_types=["image", "numpy"])
            # task_input = gr.Dropdown(choices=["report generation", "vqa", "localization", "classification"], label="Task")
            context_input = gr.Textbox(label="Context", placeholder="Enter context here...", lines=3, visible=True)
            modality_input = gr.Dropdown(choices=["cxr", "derm", "ct"], label="Modality")
            prompt_input = gr.Textbox(label="Prompt", placeholder="Enter prompt here... (images should be referred as <img0>, <img1>, ...)", lines=3)
            submit_button = gr.Button("Generate Predictions")
            with gr.Accordion("Advanced Settings", open=False):
                num_beams = gr.Slider(label="Number of Beams", minimum=1, maximum=10, step=1, value=1)
                do_sample = gr.Checkbox(label="Do Sample", value=True)
                min_length = gr.Slider(label="Minimum Length", minimum=1, maximum=100, step=1, value=1)
                top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.1, value=0.9)
                repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.1, value=1.0)
                length_penalty = gr.Slider(label="Length Penalty", minimum=1.0, maximum=2.0, step=0.1, value=1.0)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.1)
        
        with gr.Column():
            # output_text = gr.Textbox(label="Generated Text", lines=10, elem_classes="output-textbox")
            chatbot = gr.Chatbot(label="Chatbox")
            slider = gr.Slider(minimum=0, maximum=64, value=1, step=1)
            output_image = gr.AnnotatedImage(height=448, label="Images")

    # task_input.change(
    #     fn=update_context_visibility,
    #     inputs=task_input,
    #     outputs=context_input
    # )

    submit_button.click(
        fn=gradio_interface,
        inputs=[chatbot, image_input, context_input, prompt_input, modality_input, num_beams, do_sample, min_length, top_p, repetition_penalty, length_penalty, temperature],
        outputs=[chatbot, output_image, slider]
    )

    slider.change(
        render,
        inputs=[slider],
        outputs=[output_image],
    )

    examples = [
        [
            ["./demo_ex/c536f749-2326f755-6a65f28f-469affd2-26392ce9.png"],
            "Age:30-40.\nGender:F.\nIndication: ___-year-old female with end-stage renal disease not on dialysis presents with dyspnea.  PICC line placement.\nComparison: None.",
            "How would you characterize the findings from <img0>?",
            "cxr",
        ],
        [
            ["./demo_ex/79eee504-b1b60ab8-5e8dd843-b6ed87aa-670747b1.png"],
            "Age:70-80.\nGender:F.\nIndication: Respiratory distress.\nComparison: None.",
            "How would you characterize the findings from <img0>?",
            "cxr",
        ],
        [
            ["./demo_ex/f39b05b1-f544e51a-cfe317ca-b66a4aa6-1c1dc22d.png", "./demo_ex/f3fefc29-68544ac8-284b820d-858b5470-f579b982.png"],
            "Age:80-90.\nGender:F.\nIndication: ___-year-old female with history of chest pain.\nComparison: None.",
            "How would you characterize the findings from <img0><img1>?",
            "cxr",
        ],
        [
            ["./demo_ex/1de015eb-891f1b02-f90be378-d6af1e86-df3270c2.png"],
            "Age:40-50.\nGender:M.\nIndication: ___-year-old male with shortness of breath.\nComparison: None.",
            "How would you characterize the findings from <img0>?",
            "cxr",
        ],
        [
            ["./demo_ex/bc25fa99-0d3766cc-7704edb7-5c7a4a63-dc65480a.png"],
            "Age:40-50.\nGender:F.\nIndication: History: ___F with tachyacrdia cough doe  // infilatrate\nComparison: None.",
            "How would you characterize the findings from <img0>?",
            "cxr",
        ],
        [
            ["./demo_ex/ISIC_0032258.jpg"],
            "Age:70.\nGender:female.\nLocation:back.",
            "What is primary diagnosis?",
            "derm",
        ],
        [
            ["./demo_ex/Case_01013_0000.nii.gz"],
            "",
            "Segment the liver.",
            "ct",
        ],
        [
            ["./demo_ex/Case_00840_0000.nii.gz"],
            "",
            "Segment the liver.",
            "ct",
        ],
    ]

    gr.Examples(examples, inputs=[image_input, context_input, prompt_input, modality_input])

# Run Gradio app
demo.launch(share=True)