|
--- |
|
datasets: |
|
- Open-Orca/SlimOrca |
|
- ise-uiuc/Magicoder-OSS-Instruct-75K |
|
- ise-uiuc/Magicoder-Evol-Instruct-110K |
|
- meta-math/MetaMathQA |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
arxiv: 2401.02731 |
|
license: apache-2.0 |
|
--- |
|
|
|
|
|
# Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks |
|
|
|
## News |
|
- 1/10/2024 - Camelidae models are now available on [🤗HuggingFace](https://huggingface.co/hywu). |
|
- 1/4/2024 - We released the paper, [Parameter-Efficient Sparsity Crafting From Dense to Mixture-of-Experts for Instruction Tuning on General Tasks](https://arxiv.org/abs/2401.02731). |
|
- 12/22/2023 - We released the training [repo](https://github.com/wuhy68/Parameter-Efficient-MoE) that craft the dense model with LLaMA architecture to the MoE model. |
|
|
|
## Introduction |
|
Camelidae models are trained utilizing Parameter-Efficient Sparsity Crafting techniques |
|
|
|
Parameter-Efficient Sparsity Crafting can help dense models learn knowledge from different fields (including code and math). This appraoch perfrom instruction tuning and utilize MoE structure in an efficient way. |
|
|
|
Specifically, Parameter-Efficient Sparsity Crafting utilizes parameter efficient techiniques including [QLoRA](https://arxiv.org/abs/2305.14314) and [Adapter](https://arxiv.org/abs/1902.00751) to perfrom Efficient [Sparse Upcycling](https://arxiv.org/abs/2212.05055). |
|
|
|
## Model Lists |
|
| Model | Download |
|
|---|--- |
|
Camelidae-8x7B | [🤗HuggingFace](https://huggingface.co/hywu/Camelidae-8x7B) |
|
Camelidae-8x13B | [🤗HuggingFace](https://huggingface.co/hywu/Camelidae-8x13B) |
|
Camelidae-8x34B | [🤗HuggingFace](https://huggingface.co/hywu/Camelidae-8x34B) |
|
|
|
## Performance |
|
| Model | MMLU (5shot) | GSM8k (5shot) | MATH (4shot) | HumanEval (0shot) | MBPP (4shot) | HellaSwag (10shot) | TriviaQA (0shot) | |
|
|----------------------:|:------------:|:-------------:|:------------:|:-----------------:|:------------:|:------------------:|:----------------:| |
|
| GPT3.5 | 70.0% | 57.1% | **34.1%** | **48.1%** | - | 85.5% | - | |
|
| Camelidae-8x34B | 75.6% | **78.3%** | **22.6%** | **43.9%** | **41.4%** | 85.3% | **63.4%** | |
|
| SUSChat-34B | **76.4%** | 72.3% | 22.0% | 11.6% | 40.2% | 83.9% | 56.1% | |
|
| Mixtral-8x7B-instruct | 68.7% | 71.7% | 22.1% | 25.6% | 40.6% | **86.5%** | 57.7% | |
|
| LLaMA2-70B-chat | 63.8% | 59.3% | 10.4% | 32.3% | 35.6% | 84.8% | 63.0% | |
|
| Camelidae-8x13B | 54.4% | 52.6% | 9.8% | 30.6% | 30.4% | 82.5% | 59.4% | |
|
| LLaMA2-13B-chat | 54.6% | 37.1% | 5.2% | 18.9% | 27.2% | 81.9% | 55.0% | |
|
| Camelidae-8x7B | 48.3% | 44.0% | 5.8% | 18.3% | 23.4% | 79.2% | 51.0% | |
|
| LLaMA2-7B-chat | 48.3% | 26.3% | 3.9% | 12.2% | 17.6% | 78.6% | 46.4% | |
|
|
|
We bold the highest scores for open-source models and all models separately. |
|
|
|
|
|
## Usage |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x7B", trust_remote_code=True) |
|
# tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x13B", trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained("hywu/Camelidae-8x34B", trust_remote_code=True) |
|
|
|
# model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x7B", device_map="auto", trust_remote_code=True).eval() |
|
# model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x13B", device_map="auto", trust_remote_code=True).eval() |
|
model = AutoModelForCausalLM.from_pretrained("hywu/Camelidae-8x34B", device_map="auto", trust_remote_code=True).eval() |
|
|
|
inputs = tokenizer('### Human:\nHow are you?\n ### Assistant:\n', return_tensors='pt') |
|
inputs = inputs.to(model.device) |
|
pred = model.generate(**inputs) |
|
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Citation |
|
```bibtex |
|
@article{wu2024parameter, |
|
title={Parameter-Efficient Sparsity Crafting from Dense to Mixture-of-Experts for Instruction Tuning on General Tasks}, |
|
author={Wu, Haoyuan and Zheng, Haisheng and Yu, Bei}, |
|
journal={arXiv preprint arXiv:2401.02731}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
## License |
|
The source code in this repo is licensed under the [Apache 2.0 License](https://github.com/wuhy68/Parameter-Efficient-MoE/blob/master/LICENSE). Camelidae models are developed for academic research and free commercial use, all usage must adhere to the license from [facebookresearch](https://github.com/facebookresearch/llama/blob/main/LICENSE) and [01-ai](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt). |