File size: 1,767 Bytes
1261e38 bddf713 1261e38 a5e09fe 1261e38 8c062ea 1261e38 8c062ea 1261e38 a5e09fe 1261e38 7cc7985 1261e38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
language:
- ko
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- hyojin99/EBRC
base_model: openai/whisper-base
model-index:
- name: ft_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ft_model
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the EBRC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4181
- Cer: 15.8554
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 7500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4744 | 1.0 | 1250 | 0.4683 | 20.8493 |
| 0.24 | 2.0 | 2500 | 0.4053 | 18.0384 |
| 0.1392 | 3.0 | 3750 | 0.3982 | 17.4262 |
| 0.0664 | 4.0 | 5000 | 0.4042 | 16.7622 |
| 0.0273 | 5.0 | 6250 | 0.4119 | 16.3872 |
| 0.0096 | 6.0 | 7500 | 0.4181 | 15.8554 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|