File size: 1,319 Bytes
8ec10cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import torch.nn as nn
from . import common
def build_model(args):
return ResNet(args)
class ResNet(nn.Module):
def __init__(self, args, in_channels=3, out_channels=3, n_feats=None, kernel_size=None, n_resblocks=None, mean_shift=True):
super(ResNet, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.n_feats = args.n_feats if n_feats is None else n_feats
self.kernel_size = args.kernel_size if kernel_size is None else kernel_size
self.n_resblocks = args.n_resblocks if n_resblocks is None else n_resblocks
self.mean_shift = mean_shift
self.rgb_range = args.rgb_range
self.mean = self.rgb_range / 2
modules = []
modules.append(common.default_conv(self.in_channels, self.n_feats, self.kernel_size))
for _ in range(self.n_resblocks):
modules.append(common.ResBlock(self.n_feats, self.kernel_size))
modules.append(common.default_conv(self.n_feats, self.out_channels, self.kernel_size))
self.body = nn.Sequential(*modules)
def forward(self, input):
if self.mean_shift:
input = input - self.mean
output = self.body(input)
if self.mean_shift:
output = output + self.mean
return output
|