File size: 1,365 Bytes
d6ec83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
def set_template(args):
# Set the templates here
if args.template.find('jpeg') >= 0:
args.data_train = 'DIV2K_jpeg'
args.data_test = 'DIV2K_jpeg'
args.epochs = 200
args.decay = '100'
if args.template.find('EDSR_paper') >= 0:
args.model = 'EDSR'
args.n_resblocks = 32
args.n_feats = 256
args.res_scale = 0.1
if args.template.find('MDSR') >= 0:
args.model = 'MDSR'
args.patch_size = 48
args.epochs = 650
if args.template.find('DDBPN') >= 0:
args.model = 'DDBPN'
args.patch_size = 128
args.scale = '4'
args.data_test = 'Set5'
args.batch_size = 20
args.epochs = 1000
args.decay = '500'
args.gamma = 0.1
args.weight_decay = 1e-4
args.loss = '1*MSE'
if args.template.find('GAN') >= 0:
args.epochs = 200
args.lr = 5e-5
args.decay = '150'
if args.template.find('RCAN') >= 0:
args.model = 'RCAN'
args.n_resgroups = 10
args.n_resblocks = 20
args.n_feats = 64
args.chop = True
if args.template.find('VDSR') >= 0:
args.model = 'VDSR'
args.n_resblocks = 20
args.n_feats = 64
args.patch_size = 41
args.lr = 1e-1
|