File size: 3,760 Bytes
d6ec83b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Deep Back-Projection Networks For Super-Resolution
# https://arxiv.org/abs/1803.02735

from model import common

import torch
import torch.nn as nn


def make_model(args, parent=False):
    return DDBPN(args)

def projection_conv(in_channels, out_channels, scale, up=True):
    kernel_size, stride, padding = {
        2: (6, 2, 2),
        4: (8, 4, 2),
        8: (12, 8, 2)
    }[scale]
    if up:
        conv_f = nn.ConvTranspose2d
    else:
        conv_f = nn.Conv2d

    return conv_f(
        in_channels, out_channels, kernel_size,
        stride=stride, padding=padding
    )

class DenseProjection(nn.Module):
    def __init__(self, in_channels, nr, scale, up=True, bottleneck=True):
        super(DenseProjection, self).__init__()
        if bottleneck:
            self.bottleneck = nn.Sequential(*[
                nn.Conv2d(in_channels, nr, 1),
                nn.PReLU(nr)
            ])
            inter_channels = nr
        else:
            self.bottleneck = None
            inter_channels = in_channels

        self.conv_1 = nn.Sequential(*[
            projection_conv(inter_channels, nr, scale, up),
            nn.PReLU(nr)
        ])
        self.conv_2 = nn.Sequential(*[
            projection_conv(nr, inter_channels, scale, not up),
            nn.PReLU(inter_channels)
        ])
        self.conv_3 = nn.Sequential(*[
            projection_conv(inter_channels, nr, scale, up),
            nn.PReLU(nr)
        ])

    def forward(self, x):
        if self.bottleneck is not None:
            x = self.bottleneck(x)

        a_0 = self.conv_1(x)
        b_0 = self.conv_2(a_0)
        e = b_0.sub(x)
        a_1 = self.conv_3(e)

        out = a_0.add(a_1)

        return out

class DDBPN(nn.Module):
    def __init__(self, args):
        super(DDBPN, self).__init__()
        scale = args.scale[0]

        n0 = 128
        nr = 32
        self.depth = 6

        rgb_mean = (0.4488, 0.4371, 0.4040)
        rgb_std = (1.0, 1.0, 1.0)
        self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
        initial = [
            nn.Conv2d(args.n_colors, n0, 3, padding=1),
            nn.PReLU(n0),
            nn.Conv2d(n0, nr, 1),
            nn.PReLU(nr)
        ]
        self.initial = nn.Sequential(*initial)

        self.upmodules = nn.ModuleList()
        self.downmodules = nn.ModuleList()
        channels = nr
        for i in range(self.depth):
            self.upmodules.append(
                DenseProjection(channels, nr, scale, True, i > 1)
            )
            if i != 0:
                channels += nr
        
        channels = nr
        for i in range(self.depth - 1):
            self.downmodules.append(
                DenseProjection(channels, nr, scale, False, i != 0)
            )
            channels += nr

        reconstruction = [
            nn.Conv2d(self.depth * nr, args.n_colors, 3, padding=1) 
        ]
        self.reconstruction = nn.Sequential(*reconstruction)

        self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)

    def forward(self, x):
        x = self.sub_mean(x)
        x = self.initial(x)

        h_list = []
        l_list = []
        for i in range(self.depth - 1):
            if i == 0:
                l = x
            else:
                l = torch.cat(l_list, dim=1)
            h_list.append(self.upmodules[i](l))
            l_list.append(self.downmodules[i](torch.cat(h_list, dim=1)))
        
        h_list.append(self.upmodules[-1](torch.cat(l_list, dim=1)))
        out = self.reconstruction(torch.cat(h_list, dim=1))
        out = self.add_mean(out)

        return out