File size: 6,144 Bytes
3ef0208
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from model import common
from model import attention
import torch
from lambda_networks import LambdaLayer
import torch.nn as nn
import torch.cuda.amp as amp

class ConvGRU(nn.Module):
    def __init__(self, hidden_dim=128, input_dim=192+128):
        super(ConvGRU, self).__init__()
        self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
        self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
        self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)

    def forward(self, h, x):
        hx = torch.cat([h, x], dim=1)

        z = torch.sigmoid(self.convz(hx))
        r = torch.sigmoid(self.convr(hx))
        q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))

        # h = (1-z) * h + z * q
        # return h
        return (1-z) * h + z * q

class SepConvGRU(nn.Module):
    def __init__(self, hidden_dim=128, input_dim=192+128):
        super(SepConvGRU, self).__init__()
        self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
        self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
        self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))

        self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
        self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
        self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))


    def forward(self, h, x):
        # horizontal
        hx = torch.cat([h, x], dim=1)
        z = torch.sigmoid(self.convz1(hx))
        r = torch.sigmoid(self.convr1(hx))
        q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))        
        h = (1-z) * h + z * q

        # vertical
        hx = torch.cat([h, x], dim=1)
        z = torch.sigmoid(self.convz2(hx))
        r = torch.sigmoid(self.convr2(hx))
        q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))       
        h = (1-z) * h + z * q

        return h


def make_model(args, parent=False):
    return RAFTNET(args)

class RAFTNET(nn.Module):
    def __init__(self, args, conv=common.default_conv):
        super(RAFTNET, self).__init__()

        n_resblocks = args.n_resblocks
        n_feats = args.n_feats
        kernel_size = 3 
        scale = args.scale[0]

        rgb_mean = (0.4488, 0.4371, 0.4040)
        rgb_std = (1.0, 1.0, 1.0)
        self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
        # msa = attention.PyramidAttention()
        # define head module
        m_head = [conv(args.n_colors, n_feats, kernel_size)]
        # perhaps a shallow network here?
        for i in range(2):
            m_head.append(common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale))
        # convert feature to image, shared
        m_tail=[]
        for i in range(2):
            m_tail.append(common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale))
        m_tail.append(conv(n_feats, args.n_colors, kernel_size))
        # middle recurrent part
        # layer = LambdaLayer(
        #     dim = n_feats,
        #     dim_out = n_feats,
        #     r = 23,         # the receptive field for relative positional encoding (23 x 23)
        #     dim_k = 16,
        #     heads = 4,
        #     dim_u = 4,
        #     norm=args.normalization
        # )
        # define body module
        m_body = [
            common.ResBlock(
                conv, n_feats, kernel_size, nn.PReLU(), res_scale=args.res_scale
            ) for _ in range(n_resblocks//2)
        ]
        # m_body.append(layer)
        for i in range(n_resblocks//2):
            m_body.append(common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale))
      
        m_body.append(conv(n_feats, n_feats, kernel_size))

        self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)
        self.hidden_encoder=nn.Sequential(
            common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale),
            common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale),
            common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale)
        )
        self.head = nn.Sequential(*m_head)
        self.body = nn.Sequential(*m_body)
        self.tail = nn.Sequential(*m_tail)
        # self.gru = ConvGRU(hidden_dim=64,input_dim=64)
        self.recurrence = args.recurrence
        self.detach = args.detach
        # self.step_detach = args.step_detach
        self.amp = args.amp

    def forward(self, x):
        with amp.autocast(self.amp):
            x=(x-0.5)/0.5
            x = self.head(x)
            hidden = self.hidden_encoder(x)
            output_lst=[None]*self.recurrence
            for i in range(1):
                res=self.body(hidden)
                gru_out=res+hidden
                output=self.tail(gru_out)
                output_lst[i]=output*0.5+0.5
            return output_lst

    def load_state_dict(self, state_dict, strict=True):
        own_state = self.state_dict()
        for name, param in state_dict.items():
            if name in own_state:
                if isinstance(param, nn.Parameter):
                    param = param.data
                try:
                    own_state[name].copy_(param)
                except Exception:
                    if name.find('tail') == -1:
                        raise RuntimeError('While copying the parameter named {}, '
                                           'whose dimensions in the model are {} and '
                                           'whose dimensions in the checkpoint are {}.'
                                           .format(name, own_state[name].size(), param.size()))
            elif strict:
                if name.find('tail') == -1:
                    raise KeyError('unexpected key "{}" in state_dict'
                                   .format(name))