File size: 1,801 Bytes
4cda7a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Read the price data from the Excel file
price_data = pd.read_excel('Momentum II.xlsx', index_col=0, parse_dates=True)
# Calculate the 120 trading day momentum for each stock
momentum = price_data.pct_change(120)
def get_long_short_positions(df, long_percentile, short_percentile):
long_criteria = df > np.percentile(df.dropna(), long_percentile)
short_criteria = df < np.percentile(df.dropna(), short_percentile)
return long_criteria, short_criteria
# Loop through each day and stock, and calculate long and short positions
portfolio = pd.DataFrame(index=momentum.index, columns=momentum.columns)
for date, row in momentum.iterrows():
long_pos, short_pos = get_long_short_positions(row, 85, 15)
portfolio.loc[date, long_pos] = 1
portfolio.loc[date, short_pos] = -1
# Calculate the daily P&L for long and short positions separately
daily_returns = price_data.pct_change().shift(-1)
long_pnl = (portfolio * daily_returns).where(portfolio == 1).sum(axis=1)
short_pnl = (portfolio * -daily_returns).where(portfolio == -1).sum(axis=1)
# Calculate the total daily P&L by adding the long and short P&L
daily_pnl = long_pnl + short_pnl
# Calculate the cumulative P&L by summing up daily PnL values
cumulative_pnl = daily_pnl.cumsum()
# Plot the cumulative P&L curve
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(cumulative_pnl)
ax.set_title('Cumulative P&L Curve')
ax.set_xlabel('Date')
ax.set_ylabel('Portfolio Value')
ax.grid()
plt.tight_layout()
plt.show()
with pd.ExcelWriter('trade_details.xlsx') as writer:
daily_pnl.to_excel(writer, sheet_name='Daily PnL')
cumulative_pnl.to_excel(writer, sheet_name='Cumulative PnL')
portfolio.to_excel(writer, sheet_name='Portfolio Positions')
|