File size: 2,014 Bytes
19c701f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: fnlp/bart-base-chinese
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bart-base-chinese-wallstreetcn-morning-news-market-overview-SSE50-v10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-chinese-wallstreetcn-morning-news-market-overview-SSE50-v10

This model is a fine-tuned version of [fnlp/bart-base-chinese](https://huggingface.co/fnlp/bart-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5150
- Accuracy: 0.6970

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 68   | 3.2639          | 0.7273   |
| No log        | 2.0   | 136  | 3.3479          | 0.6970   |
| No log        | 3.0   | 204  | 1.0812          | 0.8182   |
| No log        | 4.0   | 272  | 3.1943          | 0.7576   |
| No log        | 5.0   | 340  | 2.3106          | 0.7576   |
| No log        | 6.0   | 408  | 2.7138          | 0.7576   |
| No log        | 7.0   | 476  | 2.2989          | 0.7879   |
| 0.0578        | 8.0   | 544  | 2.6486          | 0.6970   |
| 0.0578        | 9.0   | 612  | 2.2460          | 0.7576   |
| 0.0578        | 10.0  | 680  | 2.5150          | 0.6970   |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3