File size: 3,110 Bytes
5542ab9 eb990c5 5542ab9 eb990c5 5542ab9 eb990c5 5542ab9 eb990c5 5542ab9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-cynthia-timit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-cynthia-timit
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4888
- Wer: 0.3315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.7674 | 1.0 | 500 | 2.8994 | 1.0 |
| 1.3538 | 2.01 | 1000 | 0.5623 | 0.5630 |
| 0.5416 | 3.01 | 1500 | 0.4595 | 0.4765 |
| 0.3563 | 4.02 | 2000 | 0.4435 | 0.4328 |
| 0.2869 | 5.02 | 2500 | 0.4035 | 0.4145 |
| 0.2536 | 6.02 | 3000 | 0.4090 | 0.3945 |
| 0.2072 | 7.03 | 3500 | 0.4188 | 0.3809 |
| 0.1825 | 8.03 | 4000 | 0.4139 | 0.3865 |
| 0.1754 | 9.04 | 4500 | 0.4320 | 0.3763 |
| 0.1477 | 10.04 | 5000 | 0.4668 | 0.3699 |
| 0.1418 | 11.04 | 5500 | 0.4439 | 0.3683 |
| 0.1207 | 12.05 | 6000 | 0.4419 | 0.3678 |
| 0.115 | 13.05 | 6500 | 0.4606 | 0.3786 |
| 0.1022 | 14.06 | 7000 | 0.4403 | 0.3610 |
| 0.1019 | 15.06 | 7500 | 0.4966 | 0.3609 |
| 0.0898 | 16.06 | 8000 | 0.4675 | 0.3586 |
| 0.0824 | 17.07 | 8500 | 0.4844 | 0.3583 |
| 0.0737 | 18.07 | 9000 | 0.4801 | 0.3534 |
| 0.076 | 19.08 | 9500 | 0.4945 | 0.3529 |
| 0.0627 | 20.08 | 10000 | 0.4700 | 0.3417 |
| 0.0723 | 21.08 | 10500 | 0.4630 | 0.3449 |
| 0.0597 | 22.09 | 11000 | 0.5164 | 0.3456 |
| 0.0566 | 23.09 | 11500 | 0.4957 | 0.3401 |
| 0.0453 | 24.1 | 12000 | 0.5032 | 0.3419 |
| 0.0492 | 25.1 | 12500 | 0.5391 | 0.3387 |
| 0.0524 | 26.1 | 13000 | 0.5057 | 0.3348 |
| 0.0381 | 27.11 | 13500 | 0.5098 | 0.3331 |
| 0.0402 | 28.11 | 14000 | 0.5087 | 0.3353 |
| 0.0358 | 29.12 | 14500 | 0.4888 | 0.3315 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|