huihui-ai's picture
Update README.md
d51e71c verified
|
raw
history blame
4.25 kB
metadata
library_name: transformers
license: apache-2.0
license_link: >-
  https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2/blob/main/LICENSE
language:
  - en
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-7B-Instruct
tags:
  - chat
  - abliterated
  - uncensored

huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2

This is an uncensored version of Qwen2.5-7B-Instruct created with abliteration (see this article to know more about it).

Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models.

Important Note This version is an improvement over the previous one Qwen2.5-7B-Instruct-abliterated.

Usage

You can use this mixed model in your applications by loading it with Hugging Face's transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model_name = "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Initialize conversation context
initial_messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
]
messages = initial_messages.copy()  # Copy the initial conversation context

# Enter conversation loop
while True:
    # Get user input
    user_input = input("User: ").strip()  # Strip leading and trailing spaces

    # If the user types '/exit', end the conversation
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break

    # If the user types '/clean', reset the conversation context
    if user_input.lower() == "/clean":
        messages = initial_messages.copy()  # Reset conversation context
        print("Chat history cleared. Starting a new conversation.")
        continue

    # If input is empty, prompt the user and continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue

    # Add user input to the conversation
    messages.append({"role": "user", "content": user_input})

    # Build the chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input and prepare it for the model
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    # Generate a response from the model
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=8192
    )

    # Extract model output, removing special tokens
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    # Add the model's response to the conversation
    messages.append({"role": "assistant", "content": response})

    # Print the model's response
    print(f"Qwen: {response}")

Evaluations

The following data has been re-evaluated and calculated as the average for each test.

Benchmark Qwen2.5-7B-Instruct Qwen2.5-7B-Instruct-abliterated-v2 Qwen2.5-7B-Instruct-abliterated
IF_Eval 76.44 77.82 76.49
MMLU Pro 43.12 42.03 41.71
TruthfulQA 62.46 57.81 64.92
BBH 53.92 53.01 52.77
GPQA 31.91 32.17 31.97

The script used for evaluation can be found inside this repository under /eval.sh, or click here