|
--- |
|
license: bsd-3-clause |
|
--- |
|
Mirror of the base ProGen2-BFD90 model (with slightly modified configuration and forward pass) introduced by [Nijkamp, et al.](https://arxiv.org/abs/2206.13517). |
|
|
|
See my github [repo](https://github.com/hugohrban/ProGen2-finetuning/tree/main) for an example of finetuning or sampling from this model. |
|
|
|
Example usage: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM |
|
from tokenizers import Tokenizer |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
# load model and tokenizer |
|
model = AutoModelForCausalLM.from_pretrained("hugohrban/progen2-BFD90", trust_remote_code=True, torch_dtype="auto") |
|
tokenizer = Tokenizer.from_pretrained("hugohrban/progen2-BFD90") |
|
tokenizer.no_padding() |
|
|
|
# prepare input |
|
prompt = "1MEVVIVTGMSGAGK" |
|
input_ids = torch.tensor(tokenizer.encode(prompt).ids).to(model.device) |
|
|
|
# forward pass |
|
logits = model(input_ids).logits |
|
|
|
# print output probabilities |
|
next_token_logits = logits[-1, :] |
|
next_token_probs = F.softmax(next_token_logits, dim=-1) |
|
for i in range(tokenizer.get_vocab_size(with_added_tokens=False)): |
|
print(f"{tokenizer.id_to_token(i)}: {100 * next_token_probs[i].item():.2f} %") |
|
``` |
|
|