|
--- |
|
language: en |
|
thumbnail: http://www.huggingtweets.com/usmnt/1651680543545/predictions.png |
|
tags: |
|
- huggingtweets |
|
widget: |
|
- text: "My dream is" |
|
--- |
|
|
|
<div class="inline-flex flex-col" style="line-height: 1.5;"> |
|
<div class="flex"> |
|
<div |
|
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1410587808666955776/mWkKWw1U_400x400.jpg')"> |
|
</div> |
|
<div |
|
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')"> |
|
</div> |
|
<div |
|
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')"> |
|
</div> |
|
</div> |
|
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> |
|
<div style="text-align: center; font-size: 16px; font-weight: 800">USMNT</div> |
|
<div style="text-align: center; font-size: 14px;">@usmnt</div> |
|
</div> |
|
|
|
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). |
|
|
|
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! |
|
|
|
## How does it work? |
|
|
|
The model uses the following pipeline. |
|
|
|
![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) |
|
|
|
To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). |
|
|
|
## Training data |
|
|
|
The model was trained on tweets from USMNT. |
|
|
|
| Data | USMNT | |
|
| --- | --- | |
|
| Tweets downloaded | 3250 | |
|
| Retweets | 600 | |
|
| Short tweets | 215 | |
|
| Tweets kept | 2435 | |
|
|
|
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22ipg0a6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. |
|
|
|
## Training procedure |
|
|
|
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @usmnt's tweets. |
|
|
|
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2nbn1lat) for full transparency and reproducibility. |
|
|
|
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2nbn1lat/artifacts) is logged and versioned. |
|
|
|
## How to use |
|
|
|
You can use this model directly with a pipeline for text generation: |
|
|
|
```python |
|
from transformers import pipeline |
|
generator = pipeline('text-generation', |
|
model='huggingtweets/usmnt') |
|
generator("My dream is", num_return_sequences=5) |
|
``` |
|
|
|
## Limitations and bias |
|
|
|
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). |
|
|
|
In addition, the data present in the user's tweets further affects the text generated by the model. |
|
|
|
## About |
|
|
|
*Built by Boris Dayma* |
|
|
|
[![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) |
|
|
|
For more details, visit the project repository. |
|
|
|
[![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) |
|
|