|
--- |
|
tags: |
|
- fastai |
|
--- |
|
|
|
# Model card |
|
|
|
## Model description |
|
Fastai `unet` created with `unet_learner` using `resnet34` |
|
|
|
## Intended uses & limitations |
|
This is only used for demonstration of fine tuning capabilities with fastai. It may be useful for further research. This model should **not** be used for gastrointestinal polyp diagnosis. |
|
|
|
## Training and evaluation data |
|
The model was trained on [Kvasir SEG dataset](https://datasets.simula.no/kvasir-seg/). Kvasir SEG is an open-access dataset of gastrointestinal polyp images and corresponding segmentation masks, manually annotated and verified by an experienced gastroenterologist. |
|
20% of the data set were used as validation set and 80% as training set. |
|
|
|
### Model training details: |
|
|
|
#### Data pre-processing |
|
Masks were converted to 1 bit images: 0 for background and 1 for mask using |
|
```python |
|
Path('/notebooks/Kvasir-SEG/masks1b-binary').mkdir(parents=True, exist_ok=True) |
|
for img_path in tqdm(get_image_files(path/'masks')): |
|
img = Image.open(img_path) |
|
thresh = 127 |
|
fn = lambda x : 1 if x > thresh else 0 |
|
img1b = img.convert('L').point(fn) |
|
img1b.save(path/'masks1b-binary'/f'{img_path.stem}.png') |
|
``` |
|
#### Data loaders |
|
`SegmentationDataloaders` were used to create fastai data loaders |
|
```python |
|
def label_func(fn): return path/'masks1b-binary'/f'{fn.stem}.png' |
|
dls = SegmentationDataLoaders.from_label_func( |
|
path, bs=24, fnames = get_image_files(path/'images'), |
|
label_func = label_func, |
|
codes = list(range(2)), |
|
item_tfms=Resize(320), |
|
batch_tfms=aug_transforms(size=224, flip_vert=True) |
|
) |
|
``` |
|
An sample of training images: |
|
![show_batch](path/to/image) |
|
|
|
#### Learner |
|
Create learner with Dice and JaccardCoeff metrics |
|
```python |
|
learn = unet_learner(dls, resnet34, metrics=[Dice, JaccardCoeff]).to_fp16() |
|
``` |
|
|
|
#### Learning rate |
|
Learning rate finder |
|
![lr_find](path/to/image) |
|
|
|
#### Fine tuning |
|
Fine tuning for 12 epochs |
|
`learn.fine_tune(12, 1e-4)` |
|
``` |
|
epoch train_loss valid_loss dice jaccard_coeff time |
|
0 0.582160 0.433768 0.593044 0.421508 00:38 |
|
epoch train_loss valid_loss dice jaccard_coeff time |
|
0 0.307588 0.261374 0.712569 0.553481 00:38 |
|
1 0.261775 0.232007 0.714458 0.555764 00:38 |
|
2 0.246054 0.227708 0.781048 0.640754 00:38 |
|
3 0.224612 0.185920 0.796701 0.662097 00:39 |
|
4 0.208768 0.179064 0.821945 0.697714 00:39 |
|
5 0.192531 0.171336 0.816464 0.689851 00:39 |
|
6 0.177166 0.167357 0.820771 0.696023 00:39 |
|
7 0.168222 0.158182 0.838388 0.721745 00:39 |
|
8 0.155157 0.161950 0.829525 0.708709 00:39 |
|
9 0.148792 0.164533 0.828383 0.707043 00:38 |
|
10 0.143541 0.158669 0.833519 0.714559 00:39 |
|
11 0.140083 0.159437 0.832745 0.713422 00:38 |
|
``` |
|
![loss_graph](path/to/image) |
|
|
|
#### Results |
|
Visualization of results |
|
![show_results](path/to/image) |
|
|
|
Top losses |
|
![top_losses](path/to/image) |
|
|
|
#### Libraries used: |
|
`huggingface_hub.__version__` |
|
`'0.8.1'` |
|
|
|
`fastai.__version__` |
|
`'2.6.3'` |