alvarobartt HF staff commited on
Commit
085a491
·
verified ·
1 Parent(s): 4242c03

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +327 -3
README.md CHANGED
@@ -1,3 +1,327 @@
1
- ---
2
- license: llama3.1
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.1
3
+ language:
4
+ - en
5
+ - de
6
+ - fr
7
+ - it
8
+ - pt
9
+ - hi
10
+ - es
11
+ - th
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ tags:
15
+ - llama-3.1
16
+ - meta
17
+ - autogptq
18
+ ---
19
+
20
+ > [!IMPORTANT]
21
+ > This repository is a community-driven quantized version of the original model [`meta-llama/Meta-Llama-3.1-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) which is the FP16 half-precision official version released by Meta AI.
22
+
23
+ ## Model Information
24
+
25
+ The Meta Llama 3.1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out). The Llama 3.1 instruction tuned text only models (8B, 70B, 405B) are optimized for multilingual dialogue use cases and outperform many of the available open source and closed chat models on common industry benchmarks.
26
+
27
+ This repository contains [`meta-llama/Meta-Llama-3.1-8B-Instruct`](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) quantized using [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) from FP16 down to INT4 using the GPTQ kernels performing zero-point quantization with a group size of 128.
28
+
29
+ ## Model Usage
30
+
31
+ > [!NOTE]
32
+ > In order to run the inference with Llama 3.1 8B Instruct GPTQ in INT4, around 4 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available.
33
+
34
+ In order to use the current quantized model, support is offered for different solutions as `transformers`, `autogptq`, or `text-generation-inference`.
35
+
36
+ ### 🤗 transformers
37
+
38
+ In order to run the inference with Llama 3.1 8B Instruct GPTQ in INT4, you need to install the following packages:
39
+
40
+ ```bash
41
+ pip install -q --upgrade transformers accelerate optimum
42
+ pip install -q --no-build-isolation auto-gptq
43
+ ```
44
+
45
+ To run the inference on top of Llama 3.1 8B Instruct GPTQ in INT4 precision, the GPTQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally.
46
+
47
+ ```python
48
+ import torch
49
+ from transformers import AutoModelForCausalLM, AutoTokenizer
50
+
51
+ model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
52
+ prompt = [
53
+ {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
54
+ {"role": "user", "content": "What's Deep Learning?"},
55
+ ]
56
+
57
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
58
+
59
+ inputs = tokenizer.apply_chat_template(
60
+ prompt,
61
+ tokenize=True,
62
+ add_generation_prompt=True,
63
+ return_tensors="pt",
64
+ return_dict=True,
65
+ ).to("cuda")
66
+
67
+ model = AutoModelForCausalLM.from_pretrained(
68
+ model_id,
69
+ torch_dtype=torch.float16,
70
+ low_cpu_mem_usage=True,
71
+ device_map="auto",
72
+ )
73
+
74
+ outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
75
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
76
+ ```
77
+
78
+ ### AutoGPTQ
79
+
80
+ In order to run the inference with Llama 3.1 8B Instruct GPTQ in INT4, you need to install the following packages:
81
+
82
+ ```bash
83
+ pip install -q --upgrade transformers accelerate optimum
84
+ pip install -q --no-build-isolation auto-gptq
85
+ ```
86
+
87
+ Alternatively, one may want to run that via `AutoGPTQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above.
88
+
89
+ ```python
90
+ import torch
91
+ from auto_gptq import AutoGPTQForCausalLM
92
+ from transformers import AutoModelForCausalLM, AutoTokenizer
93
+
94
+ model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
95
+ prompt = [
96
+ {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
97
+ {"role": "user", "content": "What's Deep Learning?"},
98
+ ]
99
+
100
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
101
+
102
+ inputs = tokenizer.apply_chat_template(
103
+ prompt,
104
+ tokenize=True,
105
+ add_generation_prompt=True,
106
+ return_tensors="pt",
107
+ return_dict=True,
108
+ ).to("cuda")
109
+
110
+ model = AutoGPTQForCausalLM.from_pretrained(
111
+ model_id,
112
+ torch_dtype=torch.float16,
113
+ low_cpu_mem_usage=True,
114
+ device_map="auto",
115
+ )
116
+
117
+ outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
118
+ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
119
+ ```
120
+
121
+ The AutoGPTQ script has been adapted from [`AutoGPTQ/examples/quantization/basic_usage.py`](https://github.com/AutoGPTQ/AutoGPTQ/blob/main/examples/quantization/basic_usage.py).
122
+
123
+ ### 🤗 Text Generation Inference (TGI)
124
+
125
+ To run the `text-generation-launcher` with Llama 3.1 8B Instruct GPTQ in INT4 with Marlin kernels for optimized inference speed, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and the `huggingface_hub` Python package as you need to login to the Hugging Face Hub.
126
+
127
+ ```bash
128
+ pip install -q --upgrade huggingface_hub
129
+ huggingface-cli login
130
+ ```
131
+
132
+ Then you just need to run the TGI v2.2.0 (or higher) Docker container as follows:
133
+
134
+ ```bash
135
+ docker run --gpus all --shm-size 1g -ti -p 8080:80 \
136
+ -v hf_cache:/data \
137
+ -e MODEL_ID=hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4 \
138
+ -e NUM_SHARD=4 \
139
+ -e QUANTIZE=gptq \
140
+ -e HF_TOKEN=$(cat ~/.cache/huggingface/token) \
141
+ -e MAX_INPUT_LENGTH=4000 \
142
+ -e MAX_TOTAL_TOKENS=4096 \
143
+ ghcr.io/huggingface/text-generation-inference:2.2.0
144
+ ```
145
+
146
+ > [!NOTE]
147
+ > TGI will expose different endpoints, to see all the endpoints available check [TGI OpenAPI Specification](https://huggingface.github.io/text-generation-inference/#/).
148
+
149
+ To send request to the deployed TGI endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
150
+
151
+ ```bash
152
+ curl 0.0.0.0:8080/v1/chat/completions \
153
+ -X POST \
154
+ -H 'Content-Type: application/json' \
155
+ -d '{
156
+ "model": "tgi",
157
+ "messages": [
158
+ {
159
+ "role": "system",
160
+ "content": "You are a helpful assistant."
161
+ },
162
+ {
163
+ "role": "user",
164
+ "content": "What is Deep Learning?"
165
+ }
166
+ ],
167
+ "max_tokens": 128
168
+ }'
169
+ ```
170
+
171
+ Or programatically via the `huggingface_hub` Python client as follows:
172
+
173
+ ```python
174
+ import os
175
+ from huggingface_hub import InferenceClient
176
+
177
+ client = InferenceClient(base_url="http://0.0.0.0:8080", api_key=os.getenv("HF_TOKEN", "-"))
178
+
179
+ chat_completion = client.chat.completions.create(
180
+ model="hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4",
181
+ messages=[
182
+ {"role": "system", "content": "You are a helpful assistant."},
183
+ {"role": "user", "content": "What is Deep Learning?"},
184
+ ],
185
+ max_tokens=128,
186
+ )
187
+ ```
188
+
189
+ Alternatively, the OpenAI Python client can also be used (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
190
+
191
+ ```python
192
+ import os
193
+ from openai import OpenAI
194
+
195
+ client = OpenAI(base_url="http://0.0.0.0:8080/v1", api_key=os.getenv("OPENAI_API_KEY", "-"))
196
+
197
+ chat_completion = client.chat.completions.create(
198
+ model="tgi",
199
+ messages=[
200
+ {"role": "system", "content": "You are a helpful assistant."},
201
+ {"role": "user", "content": "What is Deep Learning?"},
202
+ ],
203
+ max_tokens=128,
204
+ )
205
+ ```
206
+
207
+ ### vLLM
208
+
209
+ To run vLLM with Llama 3.1 8B Instruct GPTQ in INT4, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and run the latest vLLM Docker container as follows:
210
+
211
+ ```bash
212
+ docker run --runtime nvidia --gpus all --ipc=host -p 8000:8000 \
213
+ -v hf_cache:/root/.cache/huggingface \
214
+ vllm/vllm-openai:latest \
215
+ --model hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4 \
216
+ --quantization gptq_marlin \
217
+ --tensor-parallel-size 4 \
218
+ --max-model-len 4096
219
+ ```
220
+
221
+ To send request to the deployed vLLM endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`:
222
+
223
+ ```bash
224
+ curl 0.0.0.0:8000/v1/chat/completions \
225
+ -X POST \
226
+ -H 'Content-Type: application/json' \
227
+ -d '{
228
+ "model": "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4",
229
+ "messages": [
230
+ {
231
+ "role": "system",
232
+ "content": "You are a helpful assistant."
233
+ },
234
+ {
235
+ "role": "user",
236
+ "content": "What is Deep Learning?"
237
+ }
238
+ ],
239
+ "max_tokens": 128
240
+ }'
241
+ ```
242
+
243
+ Or programatically via the `openai` Python client (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows:
244
+
245
+ ```python
246
+ import os
247
+ from openai import OpenAI
248
+
249
+ client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key=os.getenv("VLLM_API_KEY", "-"))
250
+
251
+ chat_completion = client.chat.completions.create(
252
+ model="hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4",
253
+ messages=[
254
+ {"role": "system", "content": "You are a helpful assistant."},
255
+ {"role": "user", "content": "What is Deep Learning?"},
256
+ ],
257
+ max_tokens=128,
258
+ )
259
+ ```
260
+
261
+ ## Quantization Reproduction
262
+
263
+ > [!NOTE]
264
+ > In order to quantize Llama 3.1 8B Instruct using AutoGPTQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~8GiB, and an NVIDIA GPU with 16GiB of VRAM to quantize it.
265
+
266
+ In order to quantize Llama 3.1 8B Instruct with GPTQ in INT4, you need to install the following packages:
267
+
268
+ ```bash
269
+ pip install -q --upgrade transformers accelerate optimum
270
+ pip install -q --no-build-isolation auto-gptq
271
+ ```
272
+
273
+ Then run the following script, adapted from [`AutoGPTQ/examples/quantization/basic_usage.py`](https://github.com/AutoGPTQ/AutoGPTQ/blob/main/examples/quantization/basic_usage.py).
274
+
275
+ ```python
276
+ import random
277
+
278
+ import numpy as np
279
+ import torch
280
+
281
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
282
+ from datasets import load_dataset
283
+ from transformers import AutoTokenizer
284
+
285
+ pretrained_model_dir = "meta-llama/Meta-Llama-3.1-8B-Instruct"
286
+ quantized_model_dir = "meta-llama/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4"
287
+
288
+ print("Loading tokenizer, dataset, and tokenizing the dataset...")
289
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
290
+ dataset = load_dataset("Salesforce/wikitext", "wikitext-2-raw-v1", split="train")
291
+ encodings = tokenizer("\n\n".join(dataset["text"]), return_tensors="pt")
292
+
293
+ print("Setting random seeds...")
294
+ random.seed(0)
295
+ np.random.seed(0)
296
+ torch.random.manual_seed(0)
297
+
298
+ print("Setting calibration samples...")
299
+ nsamples = 128
300
+ seqlen = 2048
301
+ calibration_samples = []
302
+ for _ in range(nsamples):
303
+ i = random.randint(0, encodings.input_ids.shape[1] - seqlen - 1)
304
+ j = i + seqlen
305
+ input_ids = encodings.input_ids[:, i:j]
306
+ attention_mask = torch.ones_like(input_ids)
307
+ calibration_samples.append({"input_ids": input_ids, "attention_mask": attention_mask})
308
+
309
+ quantize_config = BaseQuantizeConfig(
310
+ bits=4, # quantize model to 4-bit
311
+ group_size=128, # it is recommended to set the value to 128
312
+ desc_act=True, # set to False can significantly speed up inference but the perplexity may slightly bad
313
+ sym=True, # using symmetric quantization so that the range is symmetric allowing the value 0 to be precisely represented (can provide speedups)
314
+ damp_percent=0.1, # see https://github.com/AutoGPTQ/AutoGPTQ/issues/196
315
+ )
316
+
317
+ # load un-quantized model, by default, the model will always be loaded into CPU memory
318
+ print("Load unquantized model...")
319
+ model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config)
320
+
321
+ # quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
322
+ print("Quantize model with calibration samples...")
323
+ model.quantize(calibration_samples)
324
+
325
+ # save quantized model using safetensors
326
+ model.save_quantized(quantized_model_dir, use_safetensors=True)
327
+ ```