File size: 23,526 Bytes
7fc747c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
#!/usr/bin/env python3
import argparse
from contextlib import contextmanager
from copy import deepcopy
from functools import partial
import math
import random
from pathlib import Path
import json
import pickle
import sys
from omegaconf import OmegaConf
from PIL import Image
sys.path.append('./taming-transformers')
from taming.models import cond_transformer, vqgan
sys.path.append('./latent-diffusion')
import ldm.models.autoencoder
sys.path.append('./v-diffusion-pytorch')
from diffusion import sampling
from diffusion import utils as diffusion_utils
import pytorch_lightning as pl
from pytorch_lightning.utilities.distributed import rank_zero_only
import torch
from torch import optim, nn
from torch.nn import functional as F
from torch.utils import data
from torchvision.io import read_image
from torchvision import transforms, utils, datasets
from torchvision.transforms import functional as TF
import torchvision.transforms as T
from tqdm import trange
import wandb
from CLIP import clip
sys.path.append('./cloob-training')
from cloob_training import model_pt, pretrained
# Define utility functions
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
if config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == 'taming.models.vqgan.GumbelVQ':
model = vqgan.GumbelVQ(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
else:
raise ValueError(f'unknown model type: {config.model.target}')
del model.loss
return model
@contextmanager
def train_mode(model, mode=True):
"""A context manager that places a model into training mode and restores
the previous mode on exit."""
modes = [module.training for module in model.modules()]
try:
yield model.train(mode)
finally:
for i, module in enumerate(model.modules()):
module.training = modes[i]
def eval_mode(model):
"""A context manager that places a model into evaluation mode and restores
the previous mode on exit."""
return train_mode(model, False)
@torch.no_grad()
def ema_update(model, averaged_model, decay):
"""Incorporates updated model parameters into an exponential moving averaged
version of a model. It should be called after each optimizer step."""
model_params = dict(model.named_parameters())
averaged_params = dict(averaged_model.named_parameters())
assert model_params.keys() == averaged_params.keys()
for name, param in model_params.items():
averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
model_buffers = dict(model.named_buffers())
averaged_buffers = dict(averaged_model.named_buffers())
assert model_buffers.keys() == averaged_buffers.keys()
for name, buf in model_buffers.items():
averaged_buffers[name].copy_(buf)
# Define the diffusion noise schedule
def get_alphas_sigmas(t):
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
# Define the model (a residual U-Net)
class ResidualBlock(nn.Module):
def __init__(self, main, skip=None):
super().__init__()
self.main = nn.Sequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input):
return self.main(input) + self.skip(input)
class ResLinearBlock(ResidualBlock):
def __init__(self, f_in, f_mid, f_out, is_last=False):
skip = None if f_in == f_out else nn.Linear(f_in, f_out, bias=False)
super().__init__([
nn.Linear(f_in, f_mid),
nn.ReLU(inplace=True),
nn.Linear(f_mid, f_out),
nn.ReLU(inplace=True) if not is_last else nn.Identity(),
], skip)
class Modulation2d(nn.Module):
def __init__(self, state, feats_in, c_out):
super().__init__()
self.state = state
self.layer = nn.Linear(feats_in, c_out * 2, bias=False)
def forward(self, input):
scales, shifts = self.layer(self.state['cond']).chunk(2, dim=-1)
return torch.addcmul(shifts[..., None, None], input, scales[..., None, None] + 1)
class ResModConvBlock(ResidualBlock):
def __init__(self, state, feats_in, c_in, c_mid, c_out, is_last=False):
skip = None if c_in == c_out else nn.Conv2d(c_in, c_out, 1, bias=False)
super().__init__([
nn.Conv2d(c_in, c_mid, 3, padding=1),
nn.GroupNorm(1, c_mid, affine=False),
Modulation2d(state, feats_in, c_mid),
nn.ReLU(inplace=True),
nn.Conv2d(c_mid, c_out, 3, padding=1),
nn.GroupNorm(1, c_out, affine=False) if not is_last else nn.Identity(),
Modulation2d(state, feats_in, c_out) if not is_last else nn.Identity(),
nn.ReLU(inplace=True) if not is_last else nn.Identity(),
], skip)
class SkipBlock(nn.Module):
def __init__(self, main, skip=None):
super().__init__()
self.main = nn.Sequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input):
return torch.cat([self.main(input), self.skip(input)], dim=1)
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1.):
super().__init__()
assert out_features % 2 == 0
self.weight = nn.Parameter(torch.randn([out_features // 2, in_features]) * std)
self.weight.requires_grad_(False)
# self.register_buffer('weight', torch.randn([out_features // 2, in_features]) * std)
def forward(self, input):
f = 2 * math.pi * input @ self.weight.T
return torch.cat([f.cos(), f.sin()], dim=-1)
class SelfAttention2d(nn.Module):
def __init__(self, c_in, n_head=1, dropout_rate=0.1):
super().__init__()
assert c_in % n_head == 0
self.norm = nn.GroupNorm(1, c_in)
self.n_head = n_head
self.qkv_proj = nn.Conv2d(c_in, c_in * 3, 1)
self.out_proj = nn.Conv2d(c_in, c_in, 1)
self.dropout = nn.Identity() # nn.Dropout2d(dropout_rate, inplace=True)
def forward(self, input):
n, c, h, w = input.shape
qkv = self.qkv_proj(self.norm(input))
qkv = qkv.view([n, self.n_head * 3, c // self.n_head, h * w]).transpose(2, 3)
q, k, v = qkv.chunk(3, dim=1)
scale = k.shape[3]**-0.25
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
y = (att @ v).transpose(2, 3).contiguous().view([n, c, h, w])
return input + self.dropout(self.out_proj(y))
def expand_to_planes(input, shape):
return input[..., None, None].repeat([1, 1, shape[2], shape[3]])
class DiffusionModel(nn.Module):
def __init__(self, base_channels, cm, autoencoder_scale=1):
super().__init__()
c = base_channels # The base channel count
cs = [c * cm[0], c * cm[1], c * cm[2], c * cm[3]]
self.mapping_timestep_embed = FourierFeatures(1, 128)
self.mapping = nn.Sequential(
ResLinearBlock(512 + 128, 1024, 1024),
ResLinearBlock(1024, 1024, 1024, is_last=True),
)
with torch.no_grad():
for param in self.mapping.parameters():
param *= 0.5**0.5
self.state = {}
conv_block = partial(ResModConvBlock, self.state, 1024)
self.register_buffer('autoencoder_scale', autoencoder_scale)
self.timestep_embed = FourierFeatures(1, 16)
self.down = nn.AvgPool2d(2)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.net = nn.Sequential( # 32x32
conv_block(4 + 16, cs[0], cs[0]),
conv_block(cs[0], cs[0], cs[0]),
conv_block(cs[0], cs[0], cs[0]),
conv_block(cs[0], cs[0], cs[0]),
SkipBlock([
self.down, # 16x16
conv_block(cs[0], cs[1], cs[1]),
SelfAttention2d(cs[1], cs[1] // 64),
conv_block(cs[1], cs[1], cs[1]),
SelfAttention2d(cs[1], cs[1] // 64),
conv_block(cs[1], cs[1], cs[1]),
SelfAttention2d(cs[1], cs[1] // 64),
conv_block(cs[1], cs[1], cs[1]),
SelfAttention2d(cs[1], cs[1] // 64),
SkipBlock([
self.down, # 8x8
conv_block(cs[1], cs[2], cs[2]),
SelfAttention2d(cs[2], cs[2] // 64),
conv_block(cs[2], cs[2], cs[2]),
SelfAttention2d(cs[2], cs[2] // 64),
conv_block(cs[2], cs[2], cs[2]),
SelfAttention2d(cs[2], cs[2] // 64),
conv_block(cs[2], cs[2], cs[2]),
SelfAttention2d(cs[2], cs[2] // 64),
SkipBlock([
self.down, # 4x4
conv_block(cs[2], cs[3], cs[3]),
SelfAttention2d(cs[3], cs[3] // 64),
conv_block(cs[3], cs[3], cs[3]),
SelfAttention2d(cs[3], cs[3] // 64),
conv_block(cs[3], cs[3], cs[3]),
SelfAttention2d(cs[3], cs[3] // 64),
conv_block(cs[3], cs[3], cs[3]),
SelfAttention2d(cs[3], cs[3] // 64),
conv_block(cs[3], cs[3], cs[3]),
SelfAttention2d(cs[3], cs[3] // 64),
conv_block(cs[3], cs[3], cs[3]),
SelfAttention2d(cs[3], cs[3] // 64),
conv_block(cs[3], cs[3], cs[3]),
SelfAttention2d(cs[3], cs[3] // 64),
conv_block(cs[3], cs[3], cs[2]),
SelfAttention2d(cs[2], cs[2] // 64),
self.up,
]),
conv_block(cs[2] * 2, cs[2], cs[2]),
SelfAttention2d(cs[2], cs[2] // 64),
conv_block(cs[2], cs[2], cs[2]),
SelfAttention2d(cs[2], cs[2] // 64),
conv_block(cs[2], cs[2], cs[2]),
SelfAttention2d(cs[2], cs[2] // 64),
conv_block(cs[2], cs[2], cs[1]),
SelfAttention2d(cs[1], cs[1] // 64),
self.up,
]),
conv_block(cs[1] * 2, cs[1], cs[1]),
SelfAttention2d(cs[1], cs[1] // 64),
conv_block(cs[1], cs[1], cs[1]),
SelfAttention2d(cs[1], cs[1] // 64),
conv_block(cs[1], cs[1], cs[1]),
SelfAttention2d(cs[1], cs[1] // 64),
conv_block(cs[1], cs[1], cs[0]),
SelfAttention2d(cs[0], cs[0] // 64),
self.up,
]),
conv_block(cs[0] * 2, cs[0], cs[0]),
conv_block(cs[0], cs[0], cs[0]),
conv_block(cs[0], cs[0], cs[0]),
conv_block(cs[0], cs[0], 4, is_last=True),)
with torch.no_grad():
for param in self.net.parameters():
param *= 0.5**0.5
def forward(self, input, t, clip_embed):
clip_embed = F.normalize(clip_embed, dim=-1) * clip_embed.shape[-1]**0.5
mapping_timestep_embed = self.mapping_timestep_embed(t[:, None])
self.state['cond'] = self.mapping(torch.cat([clip_embed, mapping_timestep_embed], dim=1))
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), input.shape)
out = self.net(torch.cat([input, timestep_embed], dim=1))
self.state.clear()
return out
class TokenizerWrapper:
def __init__(self, max_len=None):
self.tokenizer = clip.simple_tokenizer.SimpleTokenizer()
self.sot_token = self.tokenizer.encoder['<|startoftext|>']
self.eot_token = self.tokenizer.encoder['<|endoftext|>']
self.context_length = 77
self.max_len = self.context_length - 2 if max_len is None else max_len
def __call__(self, texts):
if isinstance(texts, str):
texts = [texts]
result = torch.zeros([len(texts), self.context_length], dtype=torch.long)
for i, text in enumerate(texts):
tokens_trunc = self.tokenizer.encode(text)[:self.max_len]
tokens = [self.sot_token, *tokens_trunc, self.eot_token]
result[i, :len(tokens)] = torch.tensor(tokens)
return result
class ToMode:
def __init__(self, mode):
self.mode = mode
def __call__(self, image):
return image.convert(self.mode)
class LightningDiffusion(pl.LightningModule):
def __init__(self, cloob_checkpoint, vqgan_model, train_dl, autoencoder_scale,
base_channels=128, channel_multipliers="4,4,8,8", ema_decay_at=200000,
load_from=None #<<<
):
super().__init__()
# autoencoder
ae_config = OmegaConf.load(vqgan_model + '.yaml')
self.ae_model = ldm.models.autoencoder.AutoencoderKL(**ae_config.model.params)
self.ae_model.eval().requires_grad_(False)
self.ae_model.init_from_ckpt(vqgan_model + '.ckpt')
self.register_buffer('scale_factor', autoencoder_scale)
# CLOOB
cloob_config = pretrained.get_config(cloob_checkpoint)
self.cloob = model_pt.get_pt_model(cloob_config)
checkpoint = pretrained.download_checkpoint(cloob_config)
self.cloob.load_state_dict(model_pt.get_pt_params(cloob_config, checkpoint))
self.cloob.eval().requires_grad_(False)
# Diffusion model
self.model = DiffusionModel(base_channels,
[int(i) for i in channel_multipliers.strip().split(",")],
autoencoder_scale)
if load_from != None: # <<<
self.model.load_state_dict(torch.load(load_from)) # <<<
self.model_ema = deepcopy(self.model)
self.ema_decay_at = ema_decay_at
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
def encode(self, image):
return self.ae_model.encode(image).sample() / self.scale_factor
def decode(self, latent):
return self.ae_model.decode(latent * self.scale_factor)
def forward(self, *args, **kwargs):
if self.training:
return self.model(*args, **kwargs)
return self.model_ema(*args, **kwargs)
def configure_optimizers(self):
return optim.AdamW(self.model.parameters(), lr=3e-5, weight_decay=0.01)
# return optim.AdamW(self.model.parameters(), lr=5e-6, weight_decay=0.01)
def eval_batch(self, batch):
reals, _ = batch
cloob_reals = F.interpolate(reals, (224, 224), mode='bicubic', align_corners=False)
cond = self.cloob.image_encoder(self.cloob.normalize(cloob_reals))
del cloob_reals
reals = self.encode(reals * 2 - 1)
p = torch.rand([reals.shape[0], 1], device=reals.device)
cond = torch.where(p > 0.2, cond, torch.zeros_like(cond))
# Sample timesteps
t = self.rng.draw(reals.shape[0])[:, 0].to(reals)
# Calculate the noise schedule parameters for those timesteps
alphas, sigmas = get_alphas_sigmas(t)
# Combine the ground truth images and the noise
alphas = alphas[:, None, None, None]
sigmas = sigmas[:, None, None, None]
noise = torch.randn_like(reals)
noised_reals = reals * alphas + noise * sigmas
targets = noise * alphas - reals * sigmas
# Compute the model output and the loss.
v = self(noised_reals, t, cond)
return F.mse_loss(v, targets)
def training_step(self, batch, batch_idx):
loss = self.eval_batch(batch)
log_dict = {'train/loss': loss.detach()}
self.log_dict(log_dict, prog_bar=True, on_step=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
if self.trainer.global_step < 20000:
decay = 0.99
elif self.trainer.global_step < self.ema_decay_at:
decay = 0.999
else:
decay = 0.9999
ema_update(self.model, self.model_ema, decay)
class DemoCallback(pl.Callback):
def __init__(self, prompts, prompts_toks, demo_every=2000):
super().__init__()
self.prompts = prompts
self.prompts_toks = prompts_toks
self.demo_every = demo_every
@rank_zero_only
@torch.no_grad()
def on_batch_end(self, trainer, module):
if trainer.global_step % self.demo_every != 0:
return
lines = [f'({i // 4}, {i % 4}) {line}' for i, line in enumerate(self.prompts)]
lines_text = '\n'.join(lines)
Path('demo_prompts_out.txt').write_text(lines_text)
noise = torch.randn([16, 4, 32, 32], device=module.device)
clip_embed = module.cloob.text_encoder(self.prompts_toks.to(module.device))
t = torch.linspace(1, 0, 50 + 1)[:-1]
steps = diffusion_utils.get_spliced_ddpm_cosine_schedule(t)
def model_fn(x, t, clip_embed):
x_in = torch.cat([x, x])
t_in = torch.cat([t, t])
clip_embed_in = torch.cat([torch.zeros_like(clip_embed), clip_embed])
v_uncond, v_cond = module(x_in, t_in, clip_embed_in).chunk(2, dim=0)
return v_uncond + (v_cond - v_uncond) * 3
with eval_mode(module):
fakes = sampling.plms_sample(model_fn, noise, steps, {'clip_embed': clip_embed})
# fakes = sample(module, noise, 1000, 1, {'clip_embed': clip_embed}, guidance_scale=3.)
fakes = module.decode(fakes)
grid = utils.make_grid(fakes, 4, padding=0).cpu()
image = TF.to_pil_image(grid.add(1).div(2).clamp(0, 1))
filename = f'demo_{trainer.global_step:08}.png'
image.save(filename)
log_dict = {'demo_grid': wandb.Image(image),
'prompts': wandb.Html(f'<pre>{lines_text}</pre>')}
trainer.logger.experiment.log(log_dict, step=trainer.global_step)
del(clip_embed)
class ExceptionCallback(pl.Callback):
def on_exception(self, trainer, module, err):
print(f'{type(err).__name__}: {err!s}', file=sys.stderr)
def worker_init_fn(worker_id):
random.seed(torch.initial_seed())
def main():
p = argparse.ArgumentParser()
p.add_argument("--cloob-checkpoint", type=str,
default='cloob_laion_400m_vit_b_16_16_epochs',
help="the CLOOB to condition with")
p.add_argument("--vqgan-model", type=str, required=True,
help="the VQGAN checkpoint")
p.add_argument("--autoencoder-scale",
type=lambda x: torch.tensor(float(x)), required=True,
help="the VQGAN autoencoder scale")
p.add_argument('--train-set', type=Path, required=True,
help='path to the text file containing your training paths')
p.add_argument('--checkpoint-every', type=int, default=50000,
help='output a model checkpoint every N steps')
p.add_argument('--resume-from', type=str, default=None,
help='resume from (or finetune) the checkpoint at path')
p.add_argument('--demo-prompts', type=Path, required=True,
help='the demo prompts')
p.add_argument('--demo-every', type=int, default=2000,
help='output a demo grid every N steps')
p.add_argument('--wandb-project', type=str, required=True,
help='the wandb project to log to for this run')
p.add_argument('--fprecision', type=int, default=32,
help='The precision to train in (32, 16, etc)')
p.add_argument('--num-gpus', type=int, default=1,
help='the number of gpus to train with')
p.add_argument('--num-workers', type=int, default=12,
help='the number of workers to load batches with')
p.add_argument('--batch-size', type=int, default=64,
help='the batch size to use per step')
p.add_argument('--base-channels', type=int, default=128,
help='the base channel count (width) for the model')
p.add_argument('--channel-multipliers', type=str, default="4,4,8,8",
help='comma separated multiplier constants for the four model resolutions')
p.add_argument('--ema-decay-at', type=int, default=200000,
help='the step to tighten ema decay at')
args = p.parse_args()
batch_size = args.batch_size
size = 256
TRAIN_PATHS = args.train_set
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
def tf(image):
return transforms.Compose([
ToMode('RGB'),
transforms.Resize(size, interpolation=transforms.InterpolationMode.LANCZOS),
transforms.CenterCrop(size),
transforms.ToTensor(),
])(image)
tok_wrap = TokenizerWrapper()
class CustomDataset(data.Dataset):
def __init__(self, train_paths, transform=None, target_transform=None):
with open(train_paths) as infile:
self.paths = [line.strip() for line in infile.readlines() if line.strip()]
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
img_path = self.paths[idx]
image = Image.open(img_path)
if self.transform:
image = self.transform(image)
return image, 0 # Pretend this is a None
train_set = CustomDataset(TRAIN_PATHS, transform=tf)
train_dl = data.DataLoader(train_set, batch_size, shuffle=True, drop_last=True,
num_workers=args.num_workers, persistent_workers=True, pin_memory=True)
demo_prompts = Path(args.demo_prompts).read_text().strip().split('\n')
demo_prompts = tok_wrap(demo_prompts)
model = LightningDiffusion(args.cloob_checkpoint, args.vqgan_model, train_dl,
args.autoencoder_scale,
args.base_channels, args.channel_multipliers, args.ema_decay_at,
load_from=args.resume_from # <<<
)
wandb_logger = pl.loggers.WandbLogger(project=args.wandb_project)
wandb_logger.watch(model.model)
ckpt_callback = pl.callbacks.ModelCheckpoint(every_n_train_steps=args.checkpoint_every, save_top_k=-1)
demo_callback = DemoCallback(demo_prompts, demo_prompts, args.demo_every)
exc_callback = ExceptionCallback()
trainer = pl.Trainer(
gpus=args.num_gpus,
num_nodes=1,
strategy='ddp',
precision=args.fprecision,
callbacks=[ckpt_callback, demo_callback, exc_callback],
logger=wandb_logger,
log_every_n_steps=1,
max_epochs=10000000,
# resume_from_checkpoint=args.resume_from, # <<<
)
trainer.fit(model, train_dl)
if __name__ == '__main__':
main()
|