File size: 6,225 Bytes
3bf586b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
library_name: transformers
license: mit
base_model: FacebookAI/roberta-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta_large_hostel_ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta_large_hostel_ner

This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0480
- Precision: 0.6916
- Recall: 0.7347
- F1: 0.7125
- Accuracy: 0.8223

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 307   | 0.6049          | 0.5460    | 0.6836 | 0.6071 | 0.8031   |
| 0.7077        | 2.0   | 614   | 0.5622          | 0.5902    | 0.7044 | 0.6423 | 0.8194   |
| 0.7077        | 3.0   | 921   | 0.6149          | 0.6159    | 0.7155 | 0.6620 | 0.8174   |
| 0.3967        | 4.0   | 1228  | 0.6661          | 0.5917    | 0.7185 | 0.6490 | 0.8112   |
| 0.2371        | 5.0   | 1535  | 0.7497          | 0.6154    | 0.7145 | 0.6612 | 0.8126   |
| 0.2371        | 6.0   | 1842  | 0.8418          | 0.6138    | 0.7293 | 0.6666 | 0.8059   |
| 0.1496        | 7.0   | 2149  | 0.8446          | 0.6258    | 0.7231 | 0.6710 | 0.8190   |
| 0.1496        | 8.0   | 2456  | 0.9823          | 0.6399    | 0.7229 | 0.6789 | 0.8150   |
| 0.1073        | 9.0   | 2763  | 0.9789          | 0.6372    | 0.7235 | 0.6776 | 0.8163   |
| 0.0792        | 10.0  | 3070  | 1.0675          | 0.6607    | 0.7254 | 0.6915 | 0.8219   |
| 0.0792        | 11.0  | 3377  | 1.1495          | 0.6471    | 0.7306 | 0.6863 | 0.8129   |
| 0.0584        | 12.0  | 3684  | 1.1720          | 0.6313    | 0.7254 | 0.6751 | 0.8122   |
| 0.0584        | 13.0  | 3991  | 1.2905          | 0.6484    | 0.7246 | 0.6844 | 0.8080   |
| 0.0476        | 14.0  | 4298  | 1.3109          | 0.6515    | 0.7258 | 0.6867 | 0.8143   |
| 0.0321        | 15.0  | 4605  | 1.3268          | 0.6500    | 0.7256 | 0.6857 | 0.8123   |
| 0.0321        | 16.0  | 4912  | 1.4593          | 0.6482    | 0.7218 | 0.6830 | 0.8089   |
| 0.027         | 17.0  | 5219  | 1.4810          | 0.6559    | 0.7268 | 0.6895 | 0.8117   |
| 0.0242        | 18.0  | 5526  | 1.4636          | 0.6321    | 0.7193 | 0.6729 | 0.8098   |
| 0.0242        | 19.0  | 5833  | 1.5093          | 0.6640    | 0.7301 | 0.6955 | 0.8187   |
| 0.0188        | 20.0  | 6140  | 1.4944          | 0.6690    | 0.7240 | 0.6954 | 0.8178   |
| 0.0188        | 21.0  | 6447  | 1.5568          | 0.6550    | 0.7232 | 0.6874 | 0.8155   |
| 0.0164        | 22.0  | 6754  | 1.6352          | 0.6786    | 0.7215 | 0.6994 | 0.8176   |
| 0.0118        | 23.0  | 7061  | 1.6460          | 0.6674    | 0.7327 | 0.6985 | 0.8188   |
| 0.0118        | 24.0  | 7368  | 1.6089          | 0.6781    | 0.7300 | 0.7031 | 0.8223   |
| 0.0112        | 25.0  | 7675  | 1.7131          | 0.6635    | 0.7340 | 0.6970 | 0.8162   |
| 0.0112        | 26.0  | 7982  | 1.7572          | 0.6759    | 0.7313 | 0.7025 | 0.8185   |
| 0.0083        | 27.0  | 8289  | 1.7329          | 0.6726    | 0.7228 | 0.6968 | 0.8197   |
| 0.006         | 28.0  | 8596  | 1.8310          | 0.6684    | 0.7337 | 0.6995 | 0.8172   |
| 0.006         | 29.0  | 8903  | 1.8690          | 0.6692    | 0.7368 | 0.7014 | 0.8162   |
| 0.0059        | 30.0  | 9210  | 1.9132          | 0.6785    | 0.7283 | 0.7025 | 0.8173   |
| 0.0049        | 31.0  | 9517  | 1.8567          | 0.6856    | 0.7294 | 0.7068 | 0.8223   |
| 0.0049        | 32.0  | 9824  | 1.9176          | 0.6773    | 0.7320 | 0.7036 | 0.8217   |
| 0.0044        | 33.0  | 10131 | 1.9170          | 0.6843    | 0.7340 | 0.7083 | 0.8214   |
| 0.0044        | 34.0  | 10438 | 1.9416          | 0.6810    | 0.7371 | 0.7080 | 0.8196   |
| 0.004         | 35.0  | 10745 | 1.8975          | 0.6654    | 0.7332 | 0.6977 | 0.8215   |
| 0.0038        | 36.0  | 11052 | 1.9453          | 0.6877    | 0.7373 | 0.7116 | 0.8177   |
| 0.0038        | 37.0  | 11359 | 1.9305          | 0.6787    | 0.7342 | 0.7054 | 0.8179   |
| 0.002         | 38.0  | 11666 | 1.9255          | 0.6745    | 0.7313 | 0.7017 | 0.8202   |
| 0.002         | 39.0  | 11973 | 1.9737          | 0.6816    | 0.7329 | 0.7063 | 0.8196   |
| 0.0016        | 40.0  | 12280 | 1.9903          | 0.6838    | 0.7339 | 0.7080 | 0.8190   |
| 0.0018        | 41.0  | 12587 | 1.9903          | 0.6882    | 0.7365 | 0.7115 | 0.8224   |
| 0.0018        | 42.0  | 12894 | 1.9753          | 0.6802    | 0.7364 | 0.7072 | 0.8228   |
| 0.001         | 43.0  | 13201 | 2.0004          | 0.6904    | 0.7345 | 0.7118 | 0.8222   |
| 0.0007        | 44.0  | 13508 | 2.0058          | 0.6825    | 0.7357 | 0.7081 | 0.8225   |
| 0.0007        | 45.0  | 13815 | 2.0355          | 0.6874    | 0.7357 | 0.7107 | 0.8228   |
| 0.0006        | 46.0  | 14122 | 2.0481          | 0.6912    | 0.7346 | 0.7122 | 0.8226   |
| 0.0006        | 47.0  | 14429 | 2.0460          | 0.6900    | 0.7338 | 0.7112 | 0.8220   |
| 0.0004        | 48.0  | 14736 | 2.0553          | 0.6911    | 0.7364 | 0.7130 | 0.8224   |
| 0.0003        | 49.0  | 15043 | 2.0499          | 0.6918    | 0.7346 | 0.7125 | 0.8224   |
| 0.0003        | 50.0  | 15350 | 2.0480          | 0.6916    | 0.7347 | 0.7125 | 0.8223   |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0