File size: 22,510 Bytes
8359bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import deepspeed
import deepspeed
import torch
import transformers
from peft import get_peft_model, PromptTuningConfig, TaskType, PrefixTuningConfig
from torch import nn, autocast
from torch.functional import F
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.deepspeed import HfDeepSpeedConfig

from utils.format_inputs import TASK_TYPE
from utils.format_inputs import format_causal_personachat_input, format_personachat_input, format_generate_persona_input
from utils.model_helpers import print_trainable_parameters


class SelectLLMChat(nn.Module):
    def __init__(self, config, batch_size, ds_config=None):
        super(SelectLLMChat, self).__init__()
        if ds_config is not None:
            _hfdsc = HfDeepSpeedConfig(ds_config)
        peft_type = config.model.peft_type
        self.peft_type = peft_type
        assert config.model.peft_type in ['prompt_tuning', 'prefix_tuning',
                                          ], 'only prompt tuning is supported!'
        K = config.model.K
        self.K = K
        self.ensemble_training = config.training.ensemble
        self.model_name = config.model.model_name
        self.load_bit = config.model.load_bit
        self.left_tokenizer = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
        if config.training.mode != 'causal':
            self.left_tokenizer.add_special_tokens({'pad_token': '[PAD]',
                                                    'bos_token': '[BOS]',
                                                    'eos_token': '[EOS]',
                                                    'unk_token': '[UNK]',
                                                    'sep_token': '[SEP]',
                                                    'cls_token': '[CLS]',
                                                    'mask_token': '[MASK]'})
        self.left_tokenizer.padding_side = 'left'
        self.left_tokenizer.truncation_side = 'left'
        self.right_tokenizer = AutoTokenizer.from_pretrained(self.model_name, use_fast=False)
        if config.training.mode != 'causal':
            self.right_tokenizer.add_special_tokens({'pad_token': '[PAD]',
                                                     'bos_token': '[BOS]',
                                                     'eos_token': '[EOS]',
                                                     'unk_token': '[UNK]',
                                                     'sep_token': '[SEP]',
                                                     'cls_token': '[CLS]',
                                                     'mask_token': '[MASK]'})
        self.right_tokenizer.padding_side = 'right'
        self.right_tokenizer.truncation_side = 'right'
        if self.left_tokenizer.pad_token is None and config.model.pad_token=='bos':
            self.left_tokenizer.pad_token = self.left_tokenizer.bos_token
            self.right_tokenizer.pad_token = self.right_tokenizer.bos_token
        elif self.left_tokenizer.pad_token_id is None:
            self.left_tokenizer.pad_token = self.left_tokenizer.eos_token
            self.right_tokenizer.pad_token = self.right_tokenizer.eos_token
        self.batch_size = batch_size
        load_bit_map = {4: {'load_in_4bit': True,
                            'bnb_4bit_compute_dtype': torch.bfloat16},
                        8: {'load_in_8bit': True},
                        16: {'torch_dtype': torch.float16},
                        'bf16': {'torch_dtype': torch.bfloat16},
                        32: {'torch_dtype': torch.float32}}
        assert config.model.load_bit in [16, 32, 'bf16'], 'deepspeed is not friendly with bnb!'
        model = AutoModelForCausalLM.from_pretrained(
                config.model.model_name,
                **load_bit_map[config.model.load_bit]
            )
        if config.training.mode != 'causal':
            model.resize_token_embeddings(len(self.left_tokenizer))
        model.gradient_checkpointing_enable()
        if config.model.peft_config is not None:
            for param in model.parameters():
                param.requires_grad = False  # freeze the model - train adapters later
                if param.ndim == 1:
                    # cast the small parameters (e.g. layernorm) to fp32 for stability
                    param.data = param.data.to(torch.float32)
            model.enable_input_require_grads()
        class CastOutputToFloat(nn.Sequential):
            def forward(self, x): return super().forward(x).to(torch.float32)

        model.lm_head = CastOutputToFloat(model.lm_head)
        self.model = model
        models = []
        peft_config = None
        for _ in range(K):
            if config.model.peft_type == 'prompt_tuning':
                peft_config = PromptTuningConfig(
                    **config.model.peft_config,
                    task_type=TaskType.CAUSAL_LM,
                )
            elif config.model.peft_type == 'prefix_tuning':
                peft_config = PrefixTuningConfig(
                    **config.model.peft_config,
                    task_type=TaskType.CAUSAL_LM,
                )
            else:
                raise NotImplementedError()
            _peft_model = get_peft_model(model, peft_config)
            models.append(_peft_model)
        self.models = nn.ModuleList(models)
        self.learning_rate = config.training.learning_rate
        self.warmup_steps = config.training.warmup_steps
        self.config = config
        self.find_batch = False
        self.retriever = None
        if config.model.retriever.retriever_type == 'transformer_encoder':
            encoder_layer = nn.TransformerEncoderLayer(d_model=self.models[0].word_embeddings.weight.shape[1],
                                                       nhead=config.model.retriever.n_head)
            transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config.model.retriever.num_layers)
            self.retriever = transformer_encoder
        if config.model.peft_type in ['prompt_tuning'] and config.model.normalizer.__class__ is not str:
            class DoNothing(nn.Sequential):
                def forward(self, x): return x

            self.prompt_normalizer = DoNothing()
        elif config.model.normalizer == 'linear':
            if config.model.peft_type in ['prompt_tuning', 'prefix_tuning']:
                _d_peft = self.models[0].prompt_encoder.default.embedding.weight.shape[1]
            else:
                raise NotImplementedError('check here!')
            self.prompt_normalizer = nn.Linear(_d_peft, _d_peft)

        if config.model.score_activation == 'softplus':
            self.score_activation = nn.Softplus(threshold=1, beta=10)
        elif config.model.score_activation == 'relu':
            self.score_activation = nn.ReLU()
        elif config.model.score_activation == 'leaky_relu':
            self.score_activation = nn.LeakyReLU()
        else:
            self.score_activation = nn.Softplus(threshold=1, beta=10)
            # raise NotImplementedError()
        self.retriever_on = ['extra']
        if config.model.retriever.retriever_on.__class__ is list:
            self.retriever_on = config.model.retriever.retriever_on
        if config.training.all_tunable.__class__ is bool and config.training.all_tunable:
            for param in self.parameters():
                param.requires_grad = True
        print_trainable_parameters(self)
        self.contrastive_metric = None
        if config.training.contrastive_metric.__class__ is str:
            self.contrastive_metric = config.training.contrastive_metric
        self.contrastive_threshold = 0.0
        if config.training.contrastive_threshold.__class__ is float:
            self.contrastive_threshold = config.training.contrastive_threshold
        self.config = config
        self.annealing_nll = False
        self.annealing_scalar = 0.0
        if self.config.training.annealing_nll.__class__ == bool:
            self.annealing_nll = self.config.training.annealing_nll
            self.annealing_scalar = self.config.training.annealing_scalar


    def print_llm_trainable_parameters(self):
        print_trainable_parameters(self.model)

    def retrieve_based_on_input_x(self, x, K):
        return self.retrieve_prompts(x, K)

    @autocast('cuda')
    def retrieve_prompts(self, x, K):
        batch_size = x['input_ids'].shape[0]
        input_ids = x['input_ids']
        spawned_x = input_ids.repeat(K, 1)
        if self.models[0].base_model.__class__ == transformers.models.llama.modeling_llama.LlamaForCausalLM:
            spawned_x_emb = self.models[0].base_model.model.embed_tokens(spawned_x)
        else:
            spawned_x_emb = self.models[0].base_model.model.decoder.embed_tokens(spawned_x)
        if spawned_x_emb.shape[-1] != self.models[0].config.hidden_size:
            # need project_in here
            spawned_x_emb = self.models[0].base_model.model.decoder.project_in(spawned_x_emb)
        prompt_embeddings = torch.stack([_model.prompt_encoder.default.embedding.weight for _model in self.models])
        if self.retriever is not None:
            if 'extra' in self.retriever_on:
                prompt_embeddings = self.retriever(self.prompt_normalizer(prompt_embeddings))
            if 'lm' in self.retriever_on:
                spawned_x_emb = self.retriever(spawned_x_emb)
        spawned_x_emb_mean = spawned_x_emb.mean(dim=1)
        prompt_embeddings_mean = prompt_embeddings.mean(dim=1)
        if self.retriever is None:
            normalizer_on = self.config.model.normalizer_on
            if normalizer_on.__class__ is not list:
                prompt_embeddings_mean = self.prompt_normalizer(prompt_embeddings_mean)
            if 'prompt' in normalizer_on:
                prompt_embeddings_mean = self.prompt_normalizer(prompt_embeddings_mean)
            if 'lm' in normalizer_on:
                spawned_x_emb_mean = self.prompt_normalizer(spawned_x_emb_mean)
        prompt_embeddings_mean_spawn = torch.repeat_interleave(prompt_embeddings_mean, batch_size, dim=0)
        sim_scores = self.score_activation(
            torch.nn.CosineSimilarity()(prompt_embeddings_mean_spawn, spawned_x_emb_mean))
        return sim_scores

    @autocast('cuda')
    def forward(self, x, mode='training'):
        for k in x.keys():
            x[k] = x[k].cuda(device=deepspeed.comm.get_local_rank())
        if self.find_batch:
            x['attention_mask'] = x['attention_mask'].new_ones(x['attention_mask'].shape)
        if mode == 'training':
            if self.config.training.skip_retrieval.__class__ is bool and self.config.training.skip_retrieval:
                sim_scores = None
            else:
                sim_scores = self.retrieve_based_on_input_x(x, self.K)
            # get pt embeddings
            _outputs = [_model(**x) for _model in self.models]
            _logits = torch.stack([_output['logits'] for _output in _outputs])
            return {'logits': _logits, 'sim_scores': sim_scores}
        else:
            raise NotImplementedError('validation and testing not implemented')

    def on_train_start(self) -> None:
        self.print_llm_trainable_parameters()
        deepspeed.zero.Init()

    @staticmethod
    def training_step(model, batch, left_tokenizer, right_tokenizer, config, mode='normal',

                      task_type=TASK_TYPE.GENERATE_RESPONSE, training_process=0.0):
        assert mode in ['normal', 'causal']
        if task_type == TASK_TYPE.GENERATE_PERSONA and mode == 'normal':
            lm_input, lm_target = format_generate_persona_input(batch, left_tokenizer, right_tokenizer,
                                                                config)
        elif task_type == TASK_TYPE.GENERATE_RESPONSE and mode == 'causal':
            lm_input, lm_target = format_causal_personachat_input(batch, left_tokenizer, right_tokenizer,
                                                                  config)
        elif task_type == TASK_TYPE.GENERATE_RESPONSE and mode == 'normal':
            lm_input, lm_target = format_personachat_input(batch, left_tokenizer, right_tokenizer, config)
        else:
            raise NotImplementedError('mode and task_type not implemented')
        output = model.module(dict(lm_input))
        # suppose batch=2, K=3, the logits is presented interleave:
        # [0,1]
        # [0,1]
        # [0,1]
        logits = output['logits']  # (K*Batch,SeqLen,VocabSize)
        logits = logits.view(-1, logits.shape[2], logits.shape[3])
        sim_scores = output['sim_scores']
        batch_size = lm_target.size()[0]
        if config.model.peft_type == 'prompt_tuning':
            virtual_tokens = config.model.peft_config.num_virtual_tokens
            _lm_target = torch.cat(
                (lm_target.new_ones((batch_size, virtual_tokens)) * left_tokenizer.pad_token_id, lm_target), dim=1)
        else:
            _lm_target = lm_target
        _lm_target_spawn = _lm_target.repeat(config.model.K, 1)
        losses = nn.CrossEntropyLoss(ignore_index=left_tokenizer.pad_token_id, reduction='none')(
            logits.view(-1, logits.shape[-1]),
            _lm_target_spawn.cuda(device=deepspeed.comm.get_local_rank()).view(-1))
        if config.training.only_nll.__class__ == bool and config.training.only_nll:
            return losses[losses != 0].mean()

        reshaped_losses = losses.view(logits.shape[0], logits.shape[1]).detach().clone()
        reshaped_losses = torch.stack([_losses[_losses != 0].mean() for _losses in reshaped_losses.detach().clone()])
        # reshaped_losses = reshaped_losses.clone().detach().mean(dim=1)

        softmaxed_neg_losses = nn.Softmax(dim=0)(
            -reshaped_losses.view(config.model.K, batch_size) / config.training.tau_gold).permute(1, 0)
        if config.training.adding_noise.__class__ is float:
            noise = torch.randn_like(softmaxed_neg_losses, device=softmaxed_neg_losses.device)
            softmaxed_neg_losses = softmaxed_neg_losses + config.training.adding_noise * noise
        logsoftmaxed_sim_scores = F.log_softmax(sim_scores.view(config.model.K, batch_size) / config.training.tau_sim,
                                                dim=0).permute(1, 0)
        kldiv_loss = nn.KLDivLoss(reduction='batchmean')(logsoftmaxed_sim_scores,
                                                         softmaxed_neg_losses)
        selective_loss_weight = 1.0
        if config.training.annealing_nll.__class__ is bool and config.training.annealing_nll:
            _ann_scalar = config.training.annealing_scalar * (1 - training_process)
            _sim_score = torch.clamp(_ann_scalar * nn.Softmax(-1)(sim_scores),
                                     config.training.annealing_min, config.training.annealing_max).detach()
            losses = torch.einsum('ab,a->ab', losses.view(logits.shape[0], logits.shape[1]), _sim_score).view(-1)

        if config.training.selective_loss_weight.__class__ == float:
            selective_loss_weight = config.training.selective_loss_weight
        if config.training.selective_loss.__class__ == bool and (config.training.selective_loss == False):
            loss = losses[losses != 0].mean()
        elif config.training.disable_nll.__class__ is bool and config.training.disable_nll:
            loss = selective_loss_weight * kldiv_loss
        else:
            loss = losses[losses != 0].mean() + selective_loss_weight * kldiv_loss

        if model.module.ensemble_training:
            K = config.model.K
            enb_losses = []
            for data_idx in range(batch_size):
                data_indices = [data_idx + (batch_size * inc) for inc in range(K)]
                ensemble_preds = logits[data_indices, :, :]
                ensemble_sims = sim_scores[data_indices]
                normed_preds = ensemble_sims.unsqueeze(-1).unsqueeze(-1).mul(ensemble_preds)
                normed_preds = normed_preds.sum(dim=0)
                _target = _lm_target_spawn[data_indices, :]
                assert _target.unique(dim=0).shape[0] == 1, 'error in resemble the preds'
                enb_loss = nn.CrossEntropyLoss(ignore_index=left_tokenizer.pad_token_id)(normed_preds,
                                                                                         _target[0].cuda(
                                                                                             device=deepspeed.comm.get_local_rank()))
                enb_losses.append(enb_loss)
            loss += torch.stack(enb_losses).mean()
        if model.module.contrastive_metric:
            ctr_losses = []
            from sacrebleu import BLEU
            ctr_metrics = BLEU(effective_order=True)
            batch_persona = [' '.join(row) for row in batch['persona_list']]
            statics = {}
            # Dim here
            #     x1 x2
            # p1 s11 s21
            # p2 s12 s22
            # p3 s13 s23
            permuted_sim_scores = sim_scores.unsqueeze(0).view(model.module.K, batch_size)
            if model.module.contrastive_metric == 'bleu':
                for idx in range(len(batch_persona) - 1):
                    for jdx in range(idx + 1, len(batch_persona)):
                        iele = batch_persona[idx]
                        jele = batch_persona[jdx]
                        scores = ctr_metrics.sentence_score(iele, [jele]).score
                        idist = permuted_sim_scores[:, idx]
                        jdist = permuted_sim_scores[:, jdx]
                        cosine_emb_loss = nn.CosineEmbeddingLoss()
                        if scores > model.module.contrastive_threshold:
                            cosine_target = 1
                        else:
                            cosine_target = -1
                        cos_loss = cosine_emb_loss(idist, jdist, torch.tensor(cosine_target))
                        ctr_losses.append(cos_loss)
                        statics[(idx, jdx)] = {'iele': iele, 'jele': jele, 'scores': scores,
                                               'idist': idist,
                                               'jdist': jdist, 'cos_emb_loss': cos_loss}
            if len(ctr_losses) != 0:
                ctr_losses_pt = torch.stack(ctr_losses).mean()
                loss += config.training.contrastive_weight * ctr_losses_pt
            else:
                print(f'CTR ERROR: {statics}')
        return loss

    @staticmethod
    def validation_step(model, batch, left_tokenizer, right_tokenizer, config, task_type, mode='normal'):
        loss = SelectLLMChat.training_step(model, batch, left_tokenizer, right_tokenizer, config, task_type=task_type,
                                           mode=mode, training_process=0.0)
        return loss

    @staticmethod
    @autocast('cuda')
    def test_step(model, batch, left_tokenizer, right_tokenizer, config, max_new_tokens=16, tqdm_instance: tqdm = None,

                  selection_noise=None, **gen_kwargs):
        model.eval()
        with torch.no_grad():
            if config.training.mode == 'causal':
                lm_input, lm_target, inference_tokenized = format_causal_personachat_input(batch,
                                                                                           left_tokenizer,
                                                                                           right_tokenizer,
                                                                                           config,
                                                                                           for_test=True)
            else:
                lm_input, lm_target, inference_tokenized = format_personachat_input(batch, left_tokenizer,
                                                                                    right_tokenizer,
                                                                                    config,
                                                                                    for_test=True)
            inference_tokenized.to('cuda')
            if 'deepspeed' in str(model.__class__):
                batch_size = inference_tokenized['input_ids'].shape[0]
                sim_scores = model.module.retrieve_based_on_input_x(inference_tokenized, config.model.K)
                sim_scores = sim_scores.reshape(config.model.K, batch_size).permute(1, 0)
                if selection_noise:
                    noise = torch.randn_like(sim_scores, device=sim_scores.device)
                    sim_scores = sim_scores + selection_noise * noise
                selected_prompts = torch.argmax(sim_scores, dim=1)
                if tqdm_instance is not None:
                    tqdm_instance.set_postfix_str(f"selected prompts: {selected_prompts}")
                detached_selected_prompts = selected_prompts.detach().cpu().numpy()
                selected_prompts_set = set(detached_selected_prompts)
                output_dicts = {}
                # adding do_sample=False to avoid inf error!
                for key in selected_prompts_set:
                    outputs = model.module.models[key].generate(
                        input_ids=inference_tokenized['input_ids'],
                        attention_mask=inference_tokenized['attention_mask'],
                        max_new_tokens=max_new_tokens,
                        do_sample=False,
                        **gen_kwargs
                    )
                    output_dicts[key] = outputs.detach().cpu()
                raw_output = []
                for idx, prompt_idx in enumerate(detached_selected_prompts):
                    raw_output.append(output_dicts[prompt_idx][idx][inference_tokenized['input_ids'].shape[1]:])
                # raw_output = torch.stack(raw_output).squeeze(1)
                trunc_output = raw_output
                text_output = right_tokenizer.batch_decode(trunc_output, skip_special_tokens=True)
                return trunc_output, text_output, selected_prompts
            else:
                raise NotImplementedError('not implemented')