File size: 23,268 Bytes
387aa7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff4a33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
"""
MIT License

Copyright (c) 2021 Wilson Yan

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.


This file is copied from https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/attention.py
We adapted it to Hugging Face AutoModel for easier model loading.
"""


import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint

from ._utils import shift_dim, view_range, tensor_slice


class AttentionStack(nn.Module):
    def __init__(
        self, shape, embd_dim, n_head, n_layer, dropout,
        attn_type, attn_dropout, class_cond_dim, frame_cond_shape,
    ):
        super().__init__()
        self.shape = shape
        self.embd_dim = embd_dim
        self.use_frame_cond = frame_cond_shape is not None

        self.right_shift = RightShift(embd_dim)
        self.pos_embd = AddBroadcastPosEmbed(
            shape=shape, embd_dim=embd_dim
        )

        self.attn_nets = nn.ModuleList(
            [
                AttentionBlock(
                    shape=shape,
                    embd_dim=embd_dim,
                    n_head=n_head,
                    n_layer=n_layer,
                    dropout=dropout,
                    attn_type=attn_type,
                    attn_dropout=attn_dropout,
                    class_cond_dim=class_cond_dim,
                    frame_cond_shape=frame_cond_shape
                )
                for i in range(n_layer)
            ]
        )

    def forward(self, x, cond, decode_step, decode_idx):
        """
        Args
        ------
            x: (b, d1, d2, ..., dn, embd_dim)
            cond: a dictionary of conditioning tensors

            (below is used only when sampling for fast decoding)
            decode: the enumerated rasterscan order of the current idx being sampled
            decode_step: a tuple representing the current idx being sampled
        """
        x = self.right_shift(x, decode_step)
        x = self.pos_embd(x, decode_step, decode_idx)
        for net in self.attn_nets:
            x = net(x, cond, decode_step, decode_idx)

        return x


class AttentionBlock(nn.Module):
    def __init__(self, shape, embd_dim, n_head, n_layer, dropout,
                 attn_type, attn_dropout, class_cond_dim, frame_cond_shape):
        super().__init__()
        self.use_frame_cond = frame_cond_shape is not None

        self.pre_attn_norm = LayerNorm(embd_dim, class_cond_dim)
        self.post_attn_dp = nn.Dropout(dropout)
        self.attn = MultiHeadAttention(shape, embd_dim, embd_dim, n_head,
                                       n_layer, causal=True, attn_type=attn_type,
                                       attn_kwargs=dict(attn_dropout=attn_dropout))

        if frame_cond_shape is not None:
            enc_len = np.prod(frame_cond_shape[:-1])
            self.pre_enc_norm = LayerNorm(embd_dim, class_cond_dim)
            self.post_enc_dp = nn.Dropout(dropout)
            self.enc_attn = MultiHeadAttention(shape, embd_dim, frame_cond_shape[-1],
                                               n_head, n_layer, attn_type='full',
                                               attn_kwargs=dict(attn_dropout=0.), causal=False)

        self.pre_fc_norm = LayerNorm(embd_dim, class_cond_dim)
        self.post_fc_dp = nn.Dropout(dropout)
        self.fc_block = nn.Sequential(
            nn.Linear(in_features=embd_dim, out_features=embd_dim * 4),
            GeLU2(),
            nn.Linear(in_features=embd_dim * 4, out_features=embd_dim),
        )

    def forward(self, x, cond, decode_step, decode_idx):
        h = self.pre_attn_norm(x, cond)
        if self.training:
            h = checkpoint(self.attn, h, h, h, decode_step, decode_idx)
        else:
            h = self.attn(h, h, h, decode_step, decode_idx)
        h = self.post_attn_dp(h)
        x = x + h

        if self.use_frame_cond:
            h = self.pre_enc_norm(x, cond)
            if self.training:
                h = checkpoint(self.enc_attn, h, cond['frame_cond'], cond['frame_cond'],
                               decode_step, decode_idx)
            else:
                h = self.enc_attn(h, cond['frame_cond'], cond['frame_cond'],
                                  decode_step, decode_idx)
            h = self.post_enc_dp(h)
            x = x + h

        h = self.pre_fc_norm(x, cond)
        if self.training:
            h = checkpoint(self.fc_block, h)
        else:
            h = self.fc_block(h)
        h = self.post_fc_dp(h)
        x = x + h

        return x


class MultiHeadAttention(nn.Module):
    def __init__(self, shape, dim_q, dim_kv, n_head, n_layer,
                 causal, attn_type, attn_kwargs):
        super().__init__()
        self.causal = causal
        self.shape = shape

        self.d_k = dim_q // n_head
        self.d_v = dim_kv // n_head
        self.n_head = n_head

        self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q
        self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q))

        self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k
        self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv))

        self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v
        self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv))

        self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c
        self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer))

        if attn_type == 'full':
            self.attn = FullAttention(shape, causal, **attn_kwargs)
        elif attn_type == 'axial':
            assert not causal, 'causal axial attention is not supported'
            self.attn = AxialAttention(len(shape), **attn_kwargs)
        elif attn_type == 'sparse':
            self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs)

        self.cache = None

    def forward(self, q, k, v, decode_step=None, decode_idx=None):
        """ Compute multi-head attention
        Args
            q, k, v: a [b, d1, ..., dn, c] tensor or
                     a [b, 1, ..., 1, c] tensor if decode_step is not None

        Returns
            The output after performing attention
        """

        # compute k, q, v
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        q = view_range(self.w_qs(q), -1, None, (n_head, d_k))
        k = view_range(self.w_ks(k), -1, None, (n_head, d_k))
        v = view_range(self.w_vs(v), -1, None, (n_head, d_v))

        # b x n_head x seq_len x d
        # (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d)
        q = shift_dim(q, -2, 1)
        k = shift_dim(k, -2, 1)
        v = shift_dim(v, -2, 1)

        # fast decoding
        if decode_step is not None:
            if decode_step == 0:
                if self.causal:
                    k_shape = (q.shape[0], n_head, *self.shape, self.d_k)
                    v_shape = (q.shape[0], n_head, *self.shape, self.d_v)
                    self.cache = dict(k=torch.zeros(k_shape, dtype=k.dtype, device=q.device),
                                    v=torch.zeros(v_shape, dtype=v.dtype, device=q.device))
                else:
                    # cache only once in the non-causal case
                    self.cache = dict(k=k.clone(), v=v.clone())
            if self.causal:
                idx = (slice(None, None), slice(None, None), *[slice(i, i+ 1) for i in decode_idx])
                self.cache['k'][idx] = k
                self.cache['v'][idx] = v
            k, v = self.cache['k'], self.cache['v']

        a = self.attn(q, k, v, decode_step, decode_idx)

        # (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d)
        a = shift_dim(a, 1, -2).flatten(start_dim=-2)
        a = self.fc(a) # (b x seq_len x embd_dim)

        return a

############## Attention #######################
class FullAttention(nn.Module):
    def __init__(self, shape, causal, attn_dropout):
        super().__init__()
        self.causal = causal
        self.attn_dropout = attn_dropout

        seq_len = np.prod(shape)
        if self.causal:
            self.register_buffer('mask', torch.tril(torch.ones(seq_len, seq_len)))

    def forward(self, q, k, v, decode_step, decode_idx):
        mask = self.mask if self.causal else None
        if decode_step is not None and mask is not None:
            mask = mask[[decode_step]]

        old_shape = q.shape[2:-1]
        q = q.flatten(start_dim=2, end_dim=-2)
        k = k.flatten(start_dim=2, end_dim=-2)
        v = v.flatten(start_dim=2, end_dim=-2)

        out = scaled_dot_product_attention(q, k, v, mask=mask,
                                           attn_dropout=self.attn_dropout,
                                           training=self.training)

        return view_range(out, 2, 3, old_shape)

class AxialAttention(nn.Module):
    def __init__(self, n_dim, axial_dim):
        super().__init__()
        if axial_dim < 0:
            axial_dim = 2 + n_dim + 1 + axial_dim
        else:
            axial_dim += 2 # account for batch, head, dim
        self.axial_dim = axial_dim

    def forward(self, q, k, v, decode_step, decode_idx):
        q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3)
        k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3)
        v = shift_dim(v, self.axial_dim, -2)
        old_shape = list(v.shape)
        v = v.flatten(end_dim=-3)

        out = scaled_dot_product_attention(q, k, v, training=self.training)
        out = out.view(*old_shape)
        out = shift_dim(out, -2, self.axial_dim)
        return out


class SparseAttention(nn.Module):
    ops = dict()
    attn_mask = dict()
    block_layout = dict()

    def __init__(self, shape, n_head, causal, num_local_blocks=4, block=32,
                 attn_dropout=0.): # does not use attn_dropout
        super().__init__()
        self.causal = causal
        self.shape = shape

        self.sparsity_config = StridedSparsityConfig(shape=shape, n_head=n_head,
                                                     causal=causal, block=block,
                                                     num_local_blocks=num_local_blocks)

        if self.shape not in SparseAttention.block_layout:
            SparseAttention.block_layout[self.shape] = self.sparsity_config.make_layout()
        if causal and self.shape not in SparseAttention.attn_mask:
            SparseAttention.attn_mask[self.shape] = self.sparsity_config.make_sparse_attn_mask()

    def get_ops(self):
        try:
            from deepspeed.ops.sparse_attention import MatMul, Softmax
        except:
            raise Exception('Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`')
        if self.shape not in SparseAttention.ops:
            sparsity_layout = self.sparsity_config.make_layout()
            sparse_dot_sdd_nt = MatMul(sparsity_layout,
                                       self.sparsity_config.block,
                                       'sdd',
                                       trans_a=False,
                                       trans_b=True)

            sparse_dot_dsd_nn = MatMul(sparsity_layout,
                                       self.sparsity_config.block,
                                       'dsd',
                                       trans_a=False,
                                       trans_b=False)

            sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block)

            SparseAttention.ops[self.shape] = (sparse_dot_sdd_nt,
                                               sparse_dot_dsd_nn,
                                               sparse_softmax)
        return SparseAttention.ops[self.shape]

    def forward(self, q, k, v, decode_step, decode_idx):
        if self.training and self.shape not in SparseAttention.ops:
            self.get_ops()

        SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[self.shape].to(q)
        if self.causal:
            SparseAttention.attn_mask[self.shape] = SparseAttention.attn_mask[self.shape].to(q).type_as(q)
        attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None

        old_shape = q.shape[2:-1]
        q = q.flatten(start_dim=2, end_dim=-2)
        k = k.flatten(start_dim=2, end_dim=-2)
        v = v.flatten(start_dim=2, end_dim=-2)

        if decode_step is not None:
            mask = self.sparsity_config.get_non_block_layout_row(SparseAttention.block_layout[self.shape], decode_step)
            out = scaled_dot_product_attention(q, k, v, mask=mask, training=self.training)
        else:
            if q.shape != k.shape or k.shape != v.shape:
                raise Exception('SparseAttention only support self-attention')
            sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops()
            scaling = float(q.shape[-1]) ** -0.5

            attn_output_weights = sparse_dot_sdd_nt(q, k)
            if attn_mask is not None:
                attn_output_weights = attn_output_weights.masked_fill(attn_mask == 0,
                                                                      float('-inf'))
            attn_output_weights = sparse_softmax(
                attn_output_weights,
                scale=scaling
            )

            out = sparse_dot_dsd_nn(attn_output_weights, v)

        return view_range(out, 2, 3, old_shape)


class StridedSparsityConfig(object):
    """
    Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that
    generalizes to arbitrary dimensions
    """
    def __init__(self, shape, n_head, causal, block, num_local_blocks):
        self.n_head = n_head
        self.shape = shape
        self.causal = causal
        self.block = block
        self.num_local_blocks = num_local_blocks

        assert self.num_local_blocks >= 1, 'Must have at least 1 local block'
        assert self.seq_len % self.block == 0, 'seq len must be divisible by block size'

        self._block_shape = self._compute_block_shape()
        self._block_shape_cum = self._block_shape_cum_sizes()

    @property
    def seq_len(self):
        return np.prod(self.shape)

    @property
    def num_blocks(self):
        return self.seq_len // self.block

    def set_local_layout(self, layout):
        num_blocks = self.num_blocks
        for row in range(0, num_blocks):
            end = min(row + self.num_local_blocks, num_blocks)
            for col in range(
                    max(0, row - self.num_local_blocks),
                    (row + 1 if self.causal else end)):
                layout[:, row, col] = 1
        return layout

    def set_global_layout(self, layout):
        num_blocks = self.num_blocks
        n_dim = len(self._block_shape)
        for row in range(num_blocks):
            assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row
            cur_idx = self._to_unflattened_idx(row)
            # no strided attention over last dim
            for d in range(n_dim - 1):
                end = self._block_shape[d]
                for i in range(0, (cur_idx[d] + 1 if self.causal else end)):
                    new_idx = list(cur_idx)
                    new_idx[d] = i
                    new_idx = tuple(new_idx)

                    col = self._to_flattened_idx(new_idx)
                    layout[:, row, col] = 1

        return layout

    def make_layout(self):
        layout = torch.zeros((self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64)
        layout = self.set_local_layout(layout)
        layout = self.set_global_layout(layout)
        return layout

    def make_sparse_attn_mask(self):
        block_layout = self.make_layout()
        assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks

        num_dense_blocks = block_layout.sum().item()
        attn_mask = torch.ones(num_dense_blocks, self.block, self.block)
        counter = 0
        for h in range(self.n_head):
            for i in range(self.num_blocks):
                for j in range(self.num_blocks):
                    elem = block_layout[h, i, j].item()
                    if elem == 1:
                        assert i >= j
                        if i == j: # need to mask within block on diagonals
                            attn_mask[counter] = torch.tril(attn_mask[counter])
                        counter += 1
        assert counter == num_dense_blocks

        return attn_mask.unsqueeze(0)

    def get_non_block_layout_row(self, block_layout, row):
        block_row = row // self.block
        block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks
        block_row = block_row.repeat_interleave(self.block, dim=-1)
        block_row[:, :, row + 1:] = 0.
        return block_row

    ############# Helper functions ##########################

    def _compute_block_shape(self):
        n_dim = len(self.shape)
        cum_prod = 1
        for i in range(n_dim - 1, -1, -1):
            cum_prod *= self.shape[i]
            if cum_prod > self.block:
                break
        assert cum_prod % self.block == 0
        new_shape = (*self.shape[:i], cum_prod // self.block)

        assert np.prod(new_shape) == np.prod(self.shape) // self.block

        return new_shape

    def _block_shape_cum_sizes(self):
        bs = np.flip(np.array(self._block_shape))
        return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,)

    def _to_flattened_idx(self, idx):
        assert len(idx) == len(self._block_shape), f"{len(idx)} != {len(self._block_shape)}"
        flat_idx = 0
        for i in range(len(self._block_shape)):
            flat_idx += idx[i] * self._block_shape_cum[i]
        return flat_idx

    def _to_unflattened_idx(self, flat_idx):
        assert flat_idx < np.prod(self._block_shape)
        idx = []
        for i in range(len(self._block_shape)):
            idx.append(flat_idx // self._block_shape_cum[i])
            flat_idx %= self._block_shape_cum[i]
        return tuple(idx)


################ Spatiotemporal broadcasted positional embeddings ###############
class AddBroadcastPosEmbed(nn.Module):
    def __init__(self, shape, embd_dim, dim=-1):
        super().__init__()
        assert dim in [-1, 1] # only first or last dim supported
        self.shape = shape
        self.n_dim = n_dim = len(shape)
        self.embd_dim = embd_dim
        self.dim = dim

        assert embd_dim % n_dim == 0, f"{embd_dim} % {n_dim} != 0"
        self.emb = nn.ParameterDict({
             f'd_{i}': nn.Parameter(torch.randn(shape[i], embd_dim // n_dim) * 0.01
                                    if dim == -1 else
                                    torch.randn(embd_dim // n_dim, shape[i]) * 0.01)
             for i in range(n_dim)
        })

    def forward(self, x, decode_step=None, decode_idx=None):
        embs = []
        for i in range(self.n_dim):
            e = self.emb[f'd_{i}']
            if self.dim == -1:
                # (1, 1, ..., 1, self.shape[i], 1, ..., -1)
                e = e.view(1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)), -1)
                e = e.expand(1, *self.shape, -1)
            else:
                e = e.view(1, -1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)))
                e = e.expand(1, -1, *self.shape)
            embs.append(e)

        embs = torch.cat(embs, dim=self.dim)
        if decode_step is not None:
            embs = tensor_slice(embs, [0, *decode_idx, 0],
                                [x.shape[0], *(1,) * self.n_dim, x.shape[-1]])

        return x + embs

################# Helper Functions ###################################
def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0., training=True):
    # Performs scaled dot-product attention over the second to last dimension dn

    # (b, n_head, d1, ..., dn, d)
    attn = torch.matmul(q, k.transpose(-1, -2))
    attn = attn / np.sqrt(q.shape[-1])
    if mask is not None:
        attn = attn.masked_fill(mask == 0, float('-inf'))
    attn_float = F.softmax(attn, dim=-1)
    attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d
    attn = F.dropout(attn, p=attn_dropout, training=training)

    a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d

    return a


class RightShift(nn.Module):
    def __init__(self, embd_dim):
        super().__init__()
        self.embd_dim = embd_dim
        self.sos = nn.Parameter(torch.FloatTensor(embd_dim).normal_(std=0.02), requires_grad=True)

    def forward(self, x, decode_step):
        if decode_step is not None and decode_step > 0:
            return x

        x_shape = list(x.shape)
        x = x.flatten(start_dim=1, end_dim=-2) # (b, seq_len, embd_dim)
        sos = torch.ones(x_shape[0], 1, self.embd_dim, dtype=torch.float32).to(self.sos) * self.sos
        sos = sos.type_as(x)
        x = torch.cat([sos, x[:, :-1, :]], axis=1)
        x = x.view(*x_shape)

        return x


class GeLU2(nn.Module):
    def forward(self, x):
        return (1.702 * x).sigmoid() * x


class LayerNorm(nn.Module):
    def __init__(self, embd_dim, class_cond_dim):
        super().__init__()
        self.conditional = class_cond_dim is not None

        if self.conditional:
            self.w = nn.Linear(class_cond_dim, embd_dim, bias=False)
            nn.init.constant_(self.w.weight.data, 1. / np.sqrt(class_cond_dim))
            self.wb = nn.Linear(class_cond_dim, embd_dim, bias=False)
        else:
            self.g = nn.Parameter(torch.ones(embd_dim, dtype=torch.float32), requires_grad=True)
            self.b = nn.Parameter(torch.zeros(embd_dim, dtype=torch.float32), requires_grad=True)

    def forward(self, x, cond):
        if self.conditional:  # (b, cond_dim)
            g = 1 + self.w(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) # (b, ..., embd_dim)
            b = self.wb(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1])
        else:
            g = self.g  # (embd_dim,)
            b = self.b

        x_float = x.float()

        mu = x_float.mean(dim=-1, keepdims=True)
        s = (x_float - mu).square().mean(dim=-1, keepdims=True)
        x_float = (x_float - mu) * (1e-5 + s.rsqrt())  # (b, ..., embd_dim)
        x_float = x_float * g + b

        x = x_float.type_as(x)
        return x