File size: 12,001 Bytes
387aa7a 8ff4a33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
"""
MIT License
Copyright (c) 2021 Wilson Yan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This file is copied from https://github.com/wilson1yan/VideoGPT/blob/master/videogpt/vqvae.py
We adapted it to Hugging Face AutoModel for easier model loading.
"""
import os
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from .attention import MultiHeadAttention
from ._utils import shift_dim
from transformers import PreTrainedModel
from .configuration_vqvae import VQVAEConfig
class VQVAE(PreTrainedModel):
config_class = VQVAEConfig
def __init__(self, config):
super().__init__(config)
self.embedding_dim = config.embedding_dim
self.n_codes = config.n_codes
self.encoder = Encoder(config.n_hiddens, config.n_res_layers, config.downsample)
self.decoder = Decoder(config.n_hiddens, config.n_res_layers, config.downsample)
self.pre_vq_conv = SamePadConv3d(config.n_hiddens, config.embedding_dim, 1)
self.post_vq_conv = SamePadConv3d(config.embedding_dim, config.n_hiddens, 1)
self.codebook = Codebook(config.n_codes, config.embedding_dim)
@property
def latent_shape(self):
input_shape = (self.args.sequence_length, self.args.resolution,
self.args.resolution)
return tuple([s // d for s, d in zip(input_shape,
self.args.downsample)])
def encode(self, x, include_embeddings=False):
h = self.pre_vq_conv(self.encoder(x))
vq_output = self.codebook(h)
if include_embeddings:
return vq_output['encodings'], vq_output['embeddings']
else:
return vq_output['encodings']
def decode(self, encodings):
h = F.embedding(encodings, self.codebook.embeddings)
h = self.post_vq_conv(shift_dim(h, -1, 1))
return self.decoder(h)
def forward(self, x):
z = self.pre_vq_conv(self.encoder(x))
vq_output = self.codebook(z)
x_recon = self.decoder(self.post_vq_conv(vq_output['embeddings']))
recon_loss = F.mse_loss(x_recon, x) / 0.06
return recon_loss, x_recon, vq_output
class AxialBlock(nn.Module):
def __init__(self, n_hiddens, n_head):
super().__init__()
kwargs = dict(shape=(0,) * 3, dim_q=n_hiddens,
dim_kv=n_hiddens, n_head=n_head,
n_layer=1, causal=False, attn_type='axial')
self.attn_w = MultiHeadAttention(attn_kwargs=dict(axial_dim=-2),
**kwargs)
self.attn_h = MultiHeadAttention(attn_kwargs=dict(axial_dim=-3),
**kwargs)
self.attn_t = MultiHeadAttention(attn_kwargs=dict(axial_dim=-4),
**kwargs)
def forward(self, x):
x = shift_dim(x, 1, -1)
x = self.attn_w(x, x, x) + self.attn_h(x, x, x) + self.attn_t(x, x, x)
x = shift_dim(x, -1, 1)
return x
class AttentionResidualBlock(nn.Module):
def __init__(self, n_hiddens):
super().__init__()
self.block = nn.Sequential(
nn.BatchNorm3d(n_hiddens),
nn.ReLU(),
SamePadConv3d(n_hiddens, n_hiddens // 2, 3, bias=False),
nn.BatchNorm3d(n_hiddens // 2),
nn.ReLU(),
SamePadConv3d(n_hiddens // 2, n_hiddens, 1, bias=False),
nn.BatchNorm3d(n_hiddens),
nn.ReLU(),
AxialBlock(n_hiddens, 2)
)
def forward(self, x):
return x + self.block(x)
class Codebook(nn.Module):
def __init__(self, n_codes, embedding_dim):
super().__init__()
self.register_buffer('embeddings', torch.randn(n_codes, embedding_dim))
self.register_buffer('N', torch.zeros(n_codes))
self.register_buffer('z_avg', self.embeddings.data.clone())
self.n_codes = n_codes
self.embedding_dim = embedding_dim
self._need_init = True
def _tile(self, x):
d, ew = x.shape
if d < self.n_codes:
n_repeats = (self.n_codes + d - 1) // d
std = 0.01 / np.sqrt(ew)
x = x.repeat(n_repeats, 1)
x = x + torch.randn_like(x) * std
return x
def _init_embeddings(self, z):
# z: [b, c, t, h, w]
self._need_init = False
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2)
y = self._tile(flat_inputs)
d = y.shape[0]
_k_rand = y[torch.randperm(y.shape[0])][:self.n_codes]
if dist.is_initialized():
dist.broadcast(_k_rand, 0)
self.embeddings.data.copy_(_k_rand)
self.z_avg.data.copy_(_k_rand)
self.N.data.copy_(torch.ones(self.n_codes))
def forward(self, z):
# z: [b, c, t, h, w]
if self._need_init and self.training:
self._init_embeddings(z)
flat_inputs = shift_dim(z, 1, -1).flatten(end_dim=-2)
distances = (flat_inputs ** 2).sum(dim=1, keepdim=True) \
- 2 * flat_inputs @ self.embeddings.t() \
+ (self.embeddings.t() ** 2).sum(dim=0, keepdim=True)
encoding_indices = torch.argmin(distances, dim=1)
encode_onehot = F.one_hot(encoding_indices, self.n_codes).type_as(flat_inputs)
encoding_indices = encoding_indices.view(z.shape[0], *z.shape[2:])
embeddings = F.embedding(encoding_indices, self.embeddings)
embeddings = shift_dim(embeddings, -1, 1)
commitment_loss = 0.25 * F.mse_loss(z, embeddings.detach())
# EMA codebook update
if self.training:
n_total = encode_onehot.sum(dim=0)
encode_sum = flat_inputs.t() @ encode_onehot
if dist.is_initialized():
dist.all_reduce(n_total)
dist.all_reduce(encode_sum)
self.N.data.mul_(0.99).add_(n_total, alpha=0.01)
self.z_avg.data.mul_(0.99).add_(encode_sum.t(), alpha=0.01)
n = self.N.sum()
weights = (self.N + 1e-7) / (n + self.n_codes * 1e-7) * n
encode_normalized = self.z_avg / weights.unsqueeze(1)
self.embeddings.data.copy_(encode_normalized)
y = self._tile(flat_inputs)
_k_rand = y[torch.randperm(y.shape[0])][:self.n_codes]
if dist.is_initialized():
dist.broadcast(_k_rand, 0)
usage = (self.N.view(self.n_codes, 1) >= 1).float()
self.embeddings.data.mul_(usage).add_(_k_rand * (1 - usage))
embeddings_st = (embeddings - z).detach() + z
avg_probs = torch.mean(encode_onehot, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
return dict(embeddings=embeddings_st, encodings=encoding_indices,
commitment_loss=commitment_loss, perplexity=perplexity)
def dictionary_lookup(self, encodings):
embeddings = F.embedding(encodings, self.embeddings)
return embeddings
class Encoder(nn.Module):
def __init__(self, n_hiddens, n_res_layers, downsample):
super().__init__()
n_times_downsample = np.array([int(math.log2(d)) for d in downsample])
self.convs = nn.ModuleList()
max_ds = n_times_downsample.max()
for i in range(max_ds):
in_channels = 3 if i == 0 else n_hiddens
stride = tuple([2 if d > 0 else 1 for d in n_times_downsample])
conv = SamePadConv3d(in_channels, n_hiddens, 4, stride=stride)
self.convs.append(conv)
n_times_downsample -= 1
self.conv_last = SamePadConv3d(in_channels, n_hiddens, kernel_size=3)
self.res_stack = nn.Sequential(
*[AttentionResidualBlock(n_hiddens)
for _ in range(n_res_layers)],
nn.BatchNorm3d(n_hiddens),
nn.ReLU()
)
def forward(self, x):
h = x
for conv in self.convs:
h = F.relu(conv(h))
h = self.conv_last(h)
h = self.res_stack(h)
return h
class Decoder(nn.Module):
def __init__(self, n_hiddens, n_res_layers, upsample):
super().__init__()
self.res_stack = nn.Sequential(
*[AttentionResidualBlock(n_hiddens)
for _ in range(n_res_layers)],
nn.BatchNorm3d(n_hiddens),
nn.ReLU()
)
n_times_upsample = np.array([int(math.log2(d)) for d in upsample])
max_us = n_times_upsample.max()
self.convts = nn.ModuleList()
for i in range(max_us):
out_channels = 3 if i == max_us - 1 else n_hiddens
us = tuple([2 if d > 0 else 1 for d in n_times_upsample])
convt = SamePadConvTranspose3d(n_hiddens, out_channels, 4,
stride=us)
self.convts.append(convt)
n_times_upsample -= 1
def forward(self, x):
h = self.res_stack(x)
for i, convt in enumerate(self.convts):
h = convt(h)
if i < len(self.convts) - 1:
h = F.relu(h)
return h
# Does not support dilation
class SamePadConv3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
if isinstance(stride, int):
stride = (stride,) * 3
# assumes that the input shape is divisible by stride
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
pad_input = []
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
pad_input.append((p // 2 + p % 2, p // 2))
pad_input = sum(pad_input, tuple())
self.pad_input = pad_input
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size,
stride=stride, padding=0, bias=bias)
def forward(self, x):
return self.conv(F.pad(x, self.pad_input))
class SamePadConvTranspose3d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = (kernel_size,) * 3
if isinstance(stride, int):
stride = (stride,) * 3
total_pad = tuple([k - s for k, s in zip(kernel_size, stride)])
pad_input = []
for p in total_pad[::-1]: # reverse since F.pad starts from last dim
pad_input.append((p // 2 + p % 2, p // 2))
pad_input = sum(pad_input, tuple())
self.pad_input = pad_input
self.convt = nn.ConvTranspose3d(in_channels, out_channels, kernel_size,
stride=stride, bias=bias,
padding=tuple([k - 1 for k in kernel_size]))
def forward(self, x):
return self.convt(F.pad(x, self.pad_input))
|