|
import math |
|
import collections.abc |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import functools |
|
|
|
from einops import rearrange |
|
from itertools import repeat |
|
from functools import partial |
|
from .utils import approx_gelu, get_layernorm, t2i_modulate |
|
from typing import Optional |
|
|
|
|
|
try: |
|
import xformers |
|
HAS_XFORMERS = True |
|
except: |
|
HAS_XFORMERS = False |
|
|
|
|
|
|
|
|
|
|
|
class STDiT2Block(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
drop_path=0.0, |
|
enable_flash_attn=False, |
|
enable_layernorm_kernel=False, |
|
enable_sequence_parallelism=False, |
|
rope=None, |
|
qk_norm=False, |
|
): |
|
super().__init__() |
|
self.hidden_size = hidden_size |
|
self.enable_flash_attn = enable_flash_attn |
|
self._enable_sequence_parallelism = enable_sequence_parallelism |
|
|
|
assert not self._enable_sequence_parallelism, "Sequence parallelism is not supported." |
|
if enable_sequence_parallelism: |
|
self.attn_cls = SeqParallelAttention |
|
self.mha_cls = SeqParallelMultiHeadCrossAttention |
|
else: |
|
self.attn_cls = Attention |
|
self.mha_cls = MultiHeadCrossAttention |
|
|
|
|
|
self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) |
|
self.attn = self.attn_cls( |
|
hidden_size, |
|
num_heads=num_heads, |
|
qkv_bias=True, |
|
enable_flash_attn=enable_flash_attn, |
|
qk_norm=qk_norm, |
|
) |
|
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) |
|
|
|
|
|
self.cross_attn = self.mha_cls(hidden_size, num_heads) |
|
|
|
|
|
self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) |
|
self.mlp = Mlp( |
|
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
|
|
self.norm_temp = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) |
|
self.attn_temp = self.attn_cls( |
|
hidden_size, |
|
num_heads=num_heads, |
|
qkv_bias=True, |
|
enable_flash_attn=self.enable_flash_attn, |
|
rope=rope, |
|
qk_norm=qk_norm, |
|
) |
|
self.scale_shift_table_temporal = nn.Parameter(torch.randn(3, hidden_size) / hidden_size**0.5) |
|
|
|
def t_mask_select(self, x_mask, x, masked_x, T, S): |
|
|
|
|
|
|
|
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S) |
|
masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S) |
|
x = torch.where(x_mask[:, :, None, None], x, masked_x) |
|
x = rearrange(x, "B T S C -> B (T S) C") |
|
return x |
|
|
|
def forward(self, x, y, t, t_tmp, mask=None, x_mask=None, t0=None, t0_tmp=None, T=None, S=None): |
|
B, N, C = x.shape |
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + t.reshape(B, 6, -1) |
|
).chunk(6, dim=1) |
|
shift_tmp, scale_tmp, gate_tmp = (self.scale_shift_table_temporal[None] + t_tmp.reshape(B, 3, -1)).chunk( |
|
3, dim=1 |
|
) |
|
if x_mask is not None: |
|
shift_msa_zero, scale_msa_zero, gate_msa_zero, shift_mlp_zero, scale_mlp_zero, gate_mlp_zero = ( |
|
self.scale_shift_table[None] + t0.reshape(B, 6, -1) |
|
).chunk(6, dim=1) |
|
shift_tmp_zero, scale_tmp_zero, gate_tmp_zero = ( |
|
self.scale_shift_table_temporal[None] + t0_tmp.reshape(B, 3, -1) |
|
).chunk(3, dim=1) |
|
|
|
|
|
x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa) |
|
if x_mask is not None: |
|
x_m_zero = t2i_modulate(self.norm1(x), shift_msa_zero, scale_msa_zero) |
|
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S) |
|
|
|
|
|
x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=T, S=S) |
|
x_s = self.attn(x_s) |
|
x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=T, S=S) |
|
if x_mask is not None: |
|
x_s_zero = gate_msa_zero * x_s |
|
x_s = gate_msa * x_s |
|
x_s = self.t_mask_select(x_mask, x_s, x_s_zero, T, S) |
|
else: |
|
x_s = gate_msa * x_s |
|
x = x + self.drop_path(x_s) |
|
|
|
|
|
x_m = t2i_modulate(self.norm_temp(x), shift_tmp, scale_tmp) |
|
if x_mask is not None: |
|
x_m_zero = t2i_modulate(self.norm_temp(x), shift_tmp_zero, scale_tmp_zero) |
|
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S) |
|
|
|
|
|
x_t = rearrange(x_m, "B (T S) C -> (B S) T C", T=T, S=S) |
|
x_t = self.attn_temp(x_t) |
|
x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=T, S=S) |
|
if x_mask is not None: |
|
x_t_zero = gate_tmp_zero * x_t |
|
x_t = gate_tmp * x_t |
|
x_t = self.t_mask_select(x_mask, x_t, x_t_zero, T, S) |
|
else: |
|
x_t = gate_tmp * x_t |
|
x = x + self.drop_path(x_t) |
|
|
|
|
|
x = x + self.cross_attn(x, y, mask) |
|
|
|
|
|
x_m = t2i_modulate(self.norm2(x), shift_mlp, scale_mlp) |
|
if x_mask is not None: |
|
x_m_zero = t2i_modulate(self.norm2(x), shift_mlp_zero, scale_mlp_zero) |
|
x_m = self.t_mask_select(x_mask, x_m, x_m_zero, T, S) |
|
|
|
|
|
x_mlp = self.mlp(x_m) |
|
if x_mask is not None: |
|
x_mlp_zero = gate_mlp_zero * x_mlp |
|
x_mlp = gate_mlp * x_mlp |
|
x_mlp = self.t_mask_select(x_mask, x_mlp, x_mlp_zero, T, S) |
|
else: |
|
x_mlp = gate_mlp * x_mlp |
|
x = x + self.drop_path(x_mlp) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class LlamaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
LlamaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = False, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
proj_drop: float = 0.0, |
|
norm_layer: nn.Module = LlamaRMSNorm, |
|
enable_flash_attn: bool = False, |
|
rope=None, |
|
) -> None: |
|
super().__init__() |
|
assert dim % num_heads == 0, "dim should be divisible by num_heads" |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim**-0.5 |
|
self.enable_flash_attn = enable_flash_attn |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.rope = False |
|
if rope is not None: |
|
self.rope = True |
|
self.rotary_emb = rope |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, N, C = x.shape |
|
|
|
enable_flash_attn = self.enable_flash_attn and (N > B) |
|
qkv = self.qkv(x) |
|
qkv_shape = (B, N, 3, self.num_heads, self.head_dim) |
|
|
|
qkv = qkv.view(qkv_shape).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv.unbind(0) |
|
if self.rope: |
|
q = self.rotary_emb(q) |
|
k = self.rotary_emb(k) |
|
q, k = self.q_norm(q), self.k_norm(k) |
|
|
|
if enable_flash_attn: |
|
from flash_attn import flash_attn_func |
|
|
|
|
|
q = q.permute(0, 2, 1, 3) |
|
k = k.permute(0, 2, 1, 3) |
|
v = v.permute(0, 2, 1, 3) |
|
x = flash_attn_func( |
|
q, |
|
k, |
|
v, |
|
dropout_p=self.attn_drop.p if self.training else 0.0, |
|
softmax_scale=self.scale, |
|
) |
|
else: |
|
dtype = q.dtype |
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
attn = attn.to(torch.float32) |
|
attn = attn.softmax(dim=-1) |
|
attn = attn.to(dtype) |
|
attn = self.attn_drop(attn) |
|
x = attn @ v |
|
|
|
x_output_shape = (B, N, C) |
|
if not enable_flash_attn: |
|
x = x.transpose(1, 2) |
|
x = x.reshape(x_output_shape) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class MultiHeadCrossAttention(nn.Module): |
|
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0): |
|
super(MultiHeadCrossAttention, self).__init__() |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
|
|
self.q_linear = nn.Linear(d_model, d_model) |
|
self.kv_linear = nn.Linear(d_model, d_model * 2) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(d_model, d_model) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, cond, mask=None): |
|
|
|
B, N, C = x.shape |
|
|
|
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) |
|
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) |
|
k, v = kv.unbind(2) |
|
|
|
attn_bias = None |
|
if mask is not None: |
|
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) |
|
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) |
|
|
|
x = x.view(B, -1, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
'survival rate' as the argument. |
|
""" |
|
if drop_prob == 0. or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * (x.ndim - 1) |
|
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) |
|
if keep_prob > 0.0 and scale_by_keep: |
|
random_tensor.div_(keep_prob) |
|
return x * random_tensor |
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
def __init__(self, drop_prob: float = 0., scale_by_keep: bool = True): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
self.scale_by_keep = scale_by_keep |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) |
|
|
|
def extra_repr(self): |
|
return f'drop_prob={round(self.drop_prob,3):0.3f}' |
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str): |
|
return tuple(x) |
|
return tuple(repeat(x, n)) |
|
return parse |
|
|
|
to_2tuple = _ntuple(2) |
|
|
|
class Mlp(nn.Module): |
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks |
|
""" |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
norm_layer=None, |
|
bias=True, |
|
drop=0., |
|
use_conv=False, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
bias = to_2tuple(bias) |
|
drop_probs = to_2tuple(drop) |
|
linear_layer = partial(nn.Conv2d, kernel_size=1) if use_conv else nn.Linear |
|
|
|
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0]) |
|
self.act = act_layer() |
|
self.drop1 = nn.Dropout(drop_probs[0]) |
|
self.norm = norm_layer(hidden_features) if norm_layer is not None else nn.Identity() |
|
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1]) |
|
self.drop2 = nn.Dropout(drop_probs[1]) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop1(x) |
|
x = self.norm(x) |
|
x = self.fc2(x) |
|
x = self.drop2(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class CaptionEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
hidden_size, |
|
uncond_prob, |
|
act_layer=nn.GELU(approximate="tanh"), |
|
token_num=120, |
|
): |
|
super().__init__() |
|
self.y_proj = Mlp( |
|
in_features=in_channels, |
|
hidden_features=hidden_size, |
|
out_features=hidden_size, |
|
act_layer=act_layer, |
|
drop=0, |
|
) |
|
self.register_buffer( |
|
"y_embedding", |
|
torch.randn(token_num, in_channels) / in_channels**0.5, |
|
) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None): |
|
if train: |
|
assert caption.shape[2:] == self.y_embedding.shape |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
caption = self.token_drop(caption, force_drop_ids) |
|
caption = self.y_proj(caption) |
|
return caption |
|
|
|
|
|
class PatchEmbed3D(nn.Module): |
|
"""Video to Patch Embedding. |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: (2,4,4). |
|
in_chans (int): Number of input video channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__( |
|
self, |
|
patch_size=(2, 4, 4), |
|
in_chans=3, |
|
embed_dim=96, |
|
norm_layer=None, |
|
flatten=True, |
|
): |
|
super().__init__() |
|
self.patch_size = patch_size |
|
self.flatten = flatten |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
|
|
_, _, D, H, W = x.size() |
|
if W % self.patch_size[2] != 0: |
|
x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) |
|
if H % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) |
|
if D % self.patch_size[0] != 0: |
|
x = F.pad(x, (0, 0, 0, 0, 0, self.patch_size[0] - D % self.patch_size[0])) |
|
|
|
x = self.proj(x) |
|
if self.norm is not None: |
|
D, Wh, Ww = x.size(2), x.size(3), x.size(4) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, D, Wh, Ww) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
return x |
|
|
|
class T2IFinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
|
|
def __init__(self, hidden_size, num_patch, out_channels, d_t=None, d_s=None): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, num_patch * out_channels, bias=True) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) |
|
self.out_channels = out_channels |
|
self.d_t = d_t |
|
self.d_s = d_s |
|
|
|
def t_mask_select(self, x_mask, x, masked_x, T, S): |
|
|
|
|
|
|
|
x = rearrange(x, "B (T S) C -> B T S C", T=T, S=S) |
|
masked_x = rearrange(masked_x, "B (T S) C -> B T S C", T=T, S=S) |
|
x = torch.where(x_mask[:, :, None, None], x, masked_x) |
|
x = rearrange(x, "B T S C -> B (T S) C") |
|
return x |
|
|
|
def forward(self, x, t, x_mask=None, t0=None, T=None, S=None): |
|
if T is None: |
|
T = self.d_t |
|
if S is None: |
|
S = self.d_s |
|
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) |
|
x = t2i_modulate(self.norm_final(x), shift, scale) |
|
if x_mask is not None: |
|
shift_zero, scale_zero = (self.scale_shift_table[None] + t0[:, None]).chunk(2, dim=1) |
|
x_zero = t2i_modulate(self.norm_final(x), shift_zero, scale_zero) |
|
x = self.t_mask_select(x_mask, x, x_zero, T, S) |
|
x = self.linear(x) |
|
return x |
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half) |
|
freqs = freqs.to(device=t.device) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t, dtype): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) |
|
if t_freq.dtype != dtype: |
|
t_freq = t_freq.to(dtype) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
class SizeEmbedder(TimestepEmbedder): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
self.outdim = hidden_size |
|
|
|
def forward(self, s, bs): |
|
if s.ndim == 1: |
|
s = s[:, None] |
|
assert s.ndim == 2 |
|
if s.shape[0] != bs: |
|
s = s.repeat(bs // s.shape[0], 1) |
|
assert s.shape[0] == bs |
|
b, dims = s.shape[0], s.shape[1] |
|
s = rearrange(s, "b d -> (b d)") |
|
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) |
|
s_emb = self.mlp(s_freq) |
|
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) |
|
return s_emb |
|
|
|
@property |
|
def dtype(self): |
|
return next(self.parameters()).dtype |
|
|
|
|
|
class PositionEmbedding2D(nn.Module): |
|
def __init__(self, dim: int) -> None: |
|
super().__init__() |
|
self.dim = dim |
|
assert dim % 4 == 0, "dim must be divisible by 4" |
|
half_dim = dim // 2 |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, half_dim, 2).float() / half_dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def _get_sin_cos_emb(self, t: torch.Tensor): |
|
out = torch.einsum("i,d->id", t, self.inv_freq) |
|
emb_cos = torch.cos(out) |
|
emb_sin = torch.sin(out) |
|
return torch.cat((emb_sin, emb_cos), dim=-1) |
|
|
|
@functools.lru_cache(maxsize=512) |
|
def _get_cached_emb( |
|
self, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
h: int, |
|
w: int, |
|
scale: float = 1.0, |
|
base_size: Optional[int] = None, |
|
): |
|
grid_h = torch.arange(h, device=device) / scale |
|
grid_w = torch.arange(w, device=device) / scale |
|
if base_size is not None: |
|
grid_h *= base_size / h |
|
grid_w *= base_size / w |
|
grid_h, grid_w = torch.meshgrid( |
|
grid_w, |
|
grid_h, |
|
indexing="ij", |
|
) |
|
grid_h = grid_h.t().reshape(-1) |
|
grid_w = grid_w.t().reshape(-1) |
|
emb_h = self._get_sin_cos_emb(grid_h) |
|
emb_w = self._get_sin_cos_emb(grid_w) |
|
return torch.concat([emb_h, emb_w], dim=-1).unsqueeze(0).to(dtype) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
h: int, |
|
w: int, |
|
scale: Optional[float] = 1.0, |
|
base_size: Optional[int] = None, |
|
) -> torch.Tensor: |
|
return self._get_cached_emb(x.device, x.dtype, h, w, scale, base_size) |