File size: 79,111 Bytes
0b9ef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
""" modified PyTorch UMT5 model. add save attention weights function so that we can compute grad-cam."""

import copy
import math
from typing import List, Optional, Tuple, Union

import torch
from torch import nn
from torch.utils.checkpoint import checkpoint

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqModelOutput,
)
from transformers import PreTrainedModel, UMT5Config
from transformers.utils import (
    DUMMY_INPUTS,
    DUMMY_MASK,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_torch_fx_proxy,
    logging,
    replace_return_docstrings,
)


logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "UMT5Config"
_CHECKPOINT_FOR_DOC = "google/umt5-small"


# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->UMT5
class UMT5LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        Construct a layernorm module in the UMT5 style. No bias and no subtraction of mean.
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        # UMT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
        # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
        # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
        # half-precision inputs is done in fp32

        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        # convert into half-precision if necessary
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.to(self.weight.dtype)

        return self.weight * hidden_states


# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->UMT5
class UMT5DenseActDense(nn.Module):
    def __init__(self, config: UMT5Config):
        super().__init__()
        self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(config.dropout_rate)
        self.act = ACT2FN[config.dense_act_fn]

    def forward(self, hidden_states):
        hidden_states = self.wi(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.dropout(hidden_states)
        if (
            isinstance(self.wo.weight, torch.Tensor)
            and hidden_states.dtype != self.wo.weight.dtype
            and self.wo.weight.dtype != torch.int8
        ):
            hidden_states = hidden_states.to(self.wo.weight.dtype)
        hidden_states = self.wo(hidden_states)
        return hidden_states


# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->UMT5
class UMT5DenseGatedActDense(nn.Module):
    def __init__(self, config: UMT5Config):
        super().__init__()
        self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
        self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
        self.dropout = nn.Dropout(config.dropout_rate)
        self.act = ACT2FN[config.dense_act_fn]

    def forward(self, hidden_states):
        hidden_gelu = self.act(self.wi_0(hidden_states))
        hidden_linear = self.wi_1(hidden_states)
        hidden_states = hidden_gelu * hidden_linear
        hidden_states = self.dropout(hidden_states)

        # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
        # See https://github.com/huggingface/transformers/issues/20287
        # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
        if (
            isinstance(self.wo.weight, torch.Tensor)
            and hidden_states.dtype != self.wo.weight.dtype
            and self.wo.weight.dtype != torch.int8
        ):
            hidden_states = hidden_states.to(self.wo.weight.dtype)

        hidden_states = self.wo(hidden_states)
        return hidden_states


# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->UMT5
class UMT5LayerFF(nn.Module):
    def __init__(self, config: UMT5Config):
        super().__init__()
        if config.is_gated_act:
            self.DenseReluDense = UMT5DenseGatedActDense(config)
        else:
            self.DenseReluDense = UMT5DenseActDense(config)

        self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(self, hidden_states):
        forwarded_states = self.layer_norm(hidden_states)
        forwarded_states = self.DenseReluDense(forwarded_states)
        hidden_states = hidden_states + self.dropout(forwarded_states)
        return hidden_states


class UMT5Attention(nn.Module):
    """
    T5's attention using relative_attention_bias.
    """

    def __init__(self, config, has_relative_attention_bias=False):
        super().__init__()
        self.is_decoder = config.is_decoder
        self.has_relative_attention_bias = has_relative_attention_bias
        self.relative_attention_num_buckets = config.relative_attention_num_buckets
        self.relative_attention_max_distance = config.relative_attention_max_distance
        self.d_model = config.d_model
        self.key_value_proj_dim = config.d_kv
        self.n_heads = config.num_heads
        self.dropout = config.dropout_rate
        self.inner_dim = self.n_heads * self.key_value_proj_dim

        # Mesh TensorFlow initialization to avoid scaling before softmax
        self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
        self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)

        if self.has_relative_attention_bias:
            self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
        self.pruned_heads = set()

        # save attention weights
        self.save_attention = False
        self.attn_gradients = None
        self.attention_map = None
        
    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients
        
    def get_attn_gradients(self):
        return self.attn_gradients
    
    def save_attention_map(self, attention_map):
        self.attention_map = attention_map
        
    def get_attention_map(self):
        return self.attention_map
    
    def _shape(self, projection: torch.Tensor) -> torch.Tensor:
        new_projection_shape = projection.size()[:-1] + (self.n_heads, self.key_value_proj_dim)
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def _relative_position_bucket(self, relative_position):
        """
        Adapted from Mesh Tensorflow:
        https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593

        Translate relative position to a bucket number for relative attention. The relative position is defined as
        memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
        position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
        small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
        positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
        This should allow for more graceful generalization to longer sequences than the model has been trained on

        Args:
            relative_position: an int32 Tensor
            bidirectional: a boolean - whether the attention is bidirectional
            num_buckets: an integer
            max_distance: an integer

        Returns:
            a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
        """
        relative_buckets = 0
        num_buckets = self.relative_attention_num_buckets
        max_distance = self.relative_attention_max_distance
        if not self.is_decoder:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
            relative_position = torch.abs(relative_position)
        else:
            relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
        # now relative_position is in the range [0, inf)

        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact

        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        log_ratio = torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact)
        log_ratio = log_ratio * (num_buckets - max_exact)
        relative_position_if_large = max_exact + log_ratio.to(torch.long)
        relative_position_if_large = torch.min(
            relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
        )

        relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
        return relative_buckets

    def compute_bias(self, query_length, key_length, device=None):
        """Compute binned relative position bias"""
        if device is None:
            device = self.relative_attention_bias.weight.device
        context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
        memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
        relative_position = memory_position - context_position  # shape (query_length, key_length)
        relative_position_bucket = self._relative_position_bucket(relative_position)
        values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
        values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
        return values

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
    ):
        is_cross_attention = encoder_hidden_states is not None
        batch_size, seq_length = hidden_states.shape[:2]

        # use encoder_hidden_states if cross attention
        current_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        # checking that the `sequence_length` of the `past_key_value` is the same as the he provided
        # `encoder_hidden_states` to support prefix tuning
        if is_cross_attention and past_key_value and past_key_value[0].shape[2] == current_states.shape[1]:
            # reuse k,v, cross_attentions
            key_states = past_key_value[0]
            value_states = past_key_value[1]
        else:
            key_states = self._shape(self.k(current_states))
            value_states = self._shape(self.v(current_states))
            if past_key_value is not None and not is_cross_attention:
                # reuse k, v, self_attention
                key_states = torch.cat([past_key_value[0], key_states], dim=2)
                value_states = torch.cat([past_key_value[1], value_states], dim=2)

        query_states = self._shape(self.q(hidden_states))
        attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))

        # compute positional bias
        if self.has_relative_attention_bias:
            query_length = seq_length
            if past_key_value is not None:
                query_length += past_key_value[0].shape[2]
            position_bias = self.compute_bias(query_length, key_states.size(2), device=attention_scores.device)
        else:
            position_bias = torch.zeros(
                (1, self.n_heads, seq_length, key_states.size(2)),
                device=attention_scores.device,
                dtype=attention_scores.dtype,
                requires_grad=self.training,
            )
        if past_key_value is not None:
            position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
        if attention_mask is not None:
            position_bias = position_bias + attention_mask  # (batch_size, n_heads, seq_length, key_length)

        if self.is_decoder:
            # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
            # Further calls to cross_attention layer can then reuse all cross-attention
            # key/value_states (first "if" case)
            # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
            # all previous decoder key/value_states. Further calls to uni-directional self-attention
            # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
            # if encoder bi-directional self-attention `past_key_value` is always `None`
            past_key_value = (key_states, value_states)

        attention_scores += position_bias
        # (batch_size, n_heads, seq_length, key_length)
        attn_weights = nn.functional.softmax(attention_scores.float(), dim=-1).type_as(attention_scores)
        attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask

        # save attention weights
        if self.save_attention:
            self.save_attention_map(attn_weights)
            attn_weights.register_hook(self.save_attn_gradients)    

        #  attn_output = torch.bmm(attn_probs, value_states) ?
        context_states = torch.matmul(attn_weights, value_states)
        # attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) ?
        context_states = context_states.permute(0, 2, 1, 3).contiguous().view(batch_size, seq_length, -1)
        attn_output = self.o(context_states)
        return attn_output, attn_weights, past_key_value


class UMT5LayerSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.SelfAttention = UMT5Attention(config, has_relative_attention_bias=True)
        self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        layer_head_mask=None,
        past_key_value=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.SelfAttention(
            normed_hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
        )
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
        return outputs


class UMT5LayerCrossAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.EncDecAttention = UMT5Attention(config, has_relative_attention_bias=False)
        self.layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        layer_head_mask=None,
        past_key_value=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.EncDecAttention(
            normed_hidden_states,
            encoder_hidden_states=encoder_hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
        )
        layer_output = hidden_states + self.dropout(attention_output[0])
        outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
        return outputs


class UMT5Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.is_decoder = config.is_decoder
        self.layer = nn.ModuleList()
        self.layer.append(UMT5LayerSelfAttention(config))
        if self.is_decoder:
            self.layer.append(UMT5LayerCrossAttention(config))

        self.layer.append(UMT5LayerFF(config))

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
    ):
        # Self Attention
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None

        hidden_states, self_attn_weights, present_key_value = self.layer[0](
            hidden_states,
            attention_mask=attention_mask,
            layer_head_mask=layer_head_mask,
            past_key_value=self_attn_past_key_value,
        )

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == torch.float16:
            max_dtype = torch.finfo(hidden_states.dtype).max
            clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        # Cross-Attention Block
        cross_attn_present_key_value = None
        cross_attn_weights = None
        do_cross_attention = self.is_decoder and encoder_hidden_states is not None
        if do_cross_attention:
            # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
            cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.layer[1](
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
            )
            # clamp inf values to enable fp16 training
            if hidden_states.dtype == torch.float16:
                max_dtype = torch.finfo(hidden_states.dtype).max
                clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
                hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

            present_key_value += cross_attn_present_key_value

        # Apply Feed Forward layer
        hidden_states = self.layer[-1](hidden_states)

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == torch.float16:
            max_dtype = torch.finfo(hidden_states.dtype).max
            clamp_value = torch.where(torch.isinf(hidden_states).any(), max_dtype - 1000, max_dtype)
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (
            hidden_states,
            present_key_value,
        )

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        return outputs


# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->UMT5
class UMT5ClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config: UMT5Config):
        super().__init__()
        self.dense = nn.Linear(config.d_model, config.d_model)
        self.dropout = nn.Dropout(p=config.classifier_dropout)
        self.out_proj = nn.Linear(config.d_model, config.num_labels)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.dense(hidden_states)
        hidden_states = torch.tanh(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.out_proj(hidden_states)
        return hidden_states


class UMT5PreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = UMT5Config
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = True
    _no_split_modules = ["UMT5Block"]
    _keep_in_fp32_modules = ["wo"]

    @property
    def dummy_inputs(self):
        input_ids = torch.tensor(DUMMY_INPUTS)
        input_mask = torch.tensor(DUMMY_MASK)
        dummy_inputs = {
            "decoder_input_ids": input_ids,
            "input_ids": input_ids,
            "decoder_attention_mask": input_mask,
        }
        return dummy_inputs

    def _init_weights(self, module):
        """Initialize the weights"""
        factor = self.config.initializer_factor  # Used for testing weights initialization
        if isinstance(module, UMT5LayerNorm):
            module.weight.data.fill_(factor * 1.0)
        elif isinstance(
            module,
            (
                UMT5Model,
            ),
        ):
            # Mesh TensorFlow embeddings initialization
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
            module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
            if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
                module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
            if hasattr(module, "qa_outputs"):
                module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
                module.qa_outputs.bias.data.zero_()
        elif isinstance(module, UMT5ClassificationHead):
            module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.dense, "bias") and module.dense.bias is not None:
                module.dense.bias.data.zero_()
            module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
                module.out_proj.bias.data.zero_()
        elif isinstance(module, UMT5DenseActDense):
            # Mesh TensorFlow FF initialization
            # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
            # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
            module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.wi, "bias") and module.wi.bias is not None:
                module.wi.bias.data.zero_()
            module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
            if hasattr(module.wo, "bias") and module.wo.bias is not None:
                module.wo.bias.data.zero_()
        elif isinstance(module, UMT5DenseGatedActDense):
            module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
                module.wi_0.bias.data.zero_()
            module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
            if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
                module.wi_1.bias.data.zero_()
            module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
            if hasattr(module.wo, "bias") and module.wo.bias is not None:
                module.wo.bias.data.zero_()
        elif isinstance(module, UMT5Attention):
            # Mesh TensorFlow attention initialization to avoid scaling before softmax
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
            d_model = self.config.d_model
            key_value_proj_dim = self.config.d_kv
            n_heads = self.config.num_heads
            module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
            module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
            module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
            module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
            if module.has_relative_attention_bias:
                module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (UMT5Attention, UMT5Stack)):
            module.gradient_checkpointing = value

    def _shift_right(self, input_ids):
        decoder_start_token_id = self.config.decoder_start_token_id
        pad_token_id = self.config.pad_token_id

        if decoder_start_token_id is None:
            raise ValueError(
                "self.model.config.decoder_start_token_id has to be defined. In UMT5 it is usually set to the pad_token_id."
                "See UMT5 docs for more information."
            )

        # shift inputs to the right
        if is_torch_fx_proxy(input_ids):
            # Item assignment is not supported natively for proxies.
            shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
            shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
        else:
            shifted_input_ids = input_ids.new_zeros(input_ids.shape)
            shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
            shifted_input_ids[..., 0] = decoder_start_token_id

        if pad_token_id is None:
            raise ValueError("self.model.config.pad_token_id has to be defined.")
        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

        return shifted_input_ids


class UMT5Stack(UMT5PreTrainedModel):
    def __init__(self, config, embed_tokens=None):
        super().__init__(config)
        self.embed_tokens = embed_tokens
        self.is_decoder = config.is_decoder
        self.block = nn.ModuleList([UMT5Block(config) for i in range(config.num_layers)])
        self.final_layer_norm = UMT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
        self.dropout = nn.Dropout(config.dropout_rate)

        # Initialize weights and apply final processing
        self.gradient_checkpointing = False
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, new_embeddings):
        self.embed_tokens = new_embeddings

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        inputs_embeds=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(
                f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")

        if inputs_embeds is None:
            if self.embed_tokens is None:
                raise ValueError("You have to initialize the model with valid token embeddings")
            inputs_embeds = self.embed_tokens(input_ids)

        batch_size, seq_length = input_shape

        # required mask seq length can be calculated via length of past
        mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length

        if use_cache is True:
            if not self.is_decoder:
                raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")

        if attention_mask is None:
            attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
        if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
            encoder_seq_length = encoder_hidden_states.shape[1]
            encoder_attention_mask = torch.ones(
                batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
            )

        # initialize past_key_values with `None` if past does not exist
        if past_key_values is None:
            past_key_values = [None] * len(self.block)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # Prepare head mask if needed
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
        cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
        present_key_value_states = () if use_cache else None
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.is_decoder else None

        hidden_states = self.dropout(inputs_embeds)

        for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
            layer_head_mask = head_mask[i]
            cross_attn_layer_head_mask = cross_attn_head_mask[i]

            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return tuple(module(*inputs, use_cache, output_attentions))

                    return custom_forward

                layer_outputs = checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    extended_attention_mask,
                    encoder_hidden_states,
                    encoder_extended_attention_mask,
                    layer_head_mask,
                    cross_attn_layer_head_mask,
                    None,  # past_key_value is always None with gradient checkpointing
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=extended_attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_extended_attention_mask,
                    layer_head_mask=layer_head_mask,
                    cross_attn_layer_head_mask=cross_attn_layer_head_mask,
                    past_key_value=past_key_value,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

                hidden_states = layer_outputs[0]

            if use_cache:
                present_key_value_states += (layer_outputs[1],)

            if output_attentions:
                all_attentions += (layer_outputs[2],)
                if self.is_decoder:
                    all_cross_attentions += (layer_outputs[3],)

        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    present_key_value_states,
                    all_hidden_states,
                    all_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=present_key_value_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )


UMT5_START_DOCSTRING = r"""

    The UMT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
    Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
    Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
    text-to-text denoising generative setting.

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`UMT5Config`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

UMT5_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
            you should be able to pad the inputs on both the right and the left.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for detail.

            [What are input IDs?](../glossary#input-ids)

            To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are decoder input IDs?](../glossary#decoder-input-ids)

            UMT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
            is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).

            To know more on how to prepare `decoder_input_ids` for pretraining take a look at [UMT5
            Training](./umt5#training).
        decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
            1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
            1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
                Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
                `[0, 1]`:

                - 1 indicates the head is **not masked**,
                - 0 indicates the head is **masked**.

        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
            Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
            the output of the last layer of the encoder. Used in the cross-attention of the decoder.
        past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.

            If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
            of `inputs_embeds`.

        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).

        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

UMT5_ENCODER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. UMT5 is a model with relative position embeddings so
            you should be able to pad the inputs on both the right and the left.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for detail.

            To know more on how to prepare `input_ids` for pretraining take a look a [UMT5 Training](./umt5#training).
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare UMT5 Model transformer outputting raw hidden-states without any specific head on top.",
    UMT5_START_DOCSTRING,
)
class UMT5Model(UMT5PreTrainedModel):
    r"""
    Examples:

    ```python
    >>> from transformers import UMT5Model, AutoTokenizer

    >>> model = UMT5Model.from_pretrained("google/umt5-small")
    >>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
    >>> noisy_text = "UN Offizier sagt, dass weiter <extra_id_0> werden muss in Syrien."
    >>> label = "<extra_id_0> verhandelt"
    >>> inputs = tokenizer(inputs, return_tensors="pt")
    >>> labels = tokenizer(label=label, return_tensors="pt")

    >>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
    >>> hidden_states = outputs.last_hidden_state
    ```"""
    model_type = "uumt5"
    config_class = UMT5Config
    _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = UMT5Stack(encoder_config, self.shared)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = UMT5Stack(decoder_config, self.shared)

        # Initialize weights and apply final processing
        self.post_init()

    # Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings
    def get_input_embeddings(self):
        return self.shared

    # Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings
    def set_input_embeddings(self, new_embeddings):
        self.shared = new_embeddings
        self.encoder.set_input_embeddings(new_embeddings)
        self.decoder.set_input_embeddings(new_embeddings)

    # Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder
    def get_encoder(self):
        return self.encoder

    # Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder
    def get_decoder(self):
        return self.decoder

    # Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads
    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_model_forward(UMT5_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        decoder_inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
        r"""
        Returns:

        Example:

        ```python
        >>> from transformers import AutoTokenizer, UMT5Model

        >>> tokenizer = AutoTokenizer.from_pretrained("google/umt5-small")
        >>> model = UMT5Model.from_pretrained("google/umt5-small")

        >>> input_ids = tokenizer(
        ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
        ... ).input_ids  # Batch size 1
        >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1

        >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for UMT5Model.
        >>> # This is not needed for torch's UMT5ForConditionalGeneration as it does this internally using labels arg.
        >>> decoder_input_ids = model._shift_right(decoder_input_ids)

        >>> # forward pass
        >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
        >>> last_hidden_states = outputs.last_hidden_state
        ```"""
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        hidden_states = encoder_outputs[0]

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs + encoder_outputs

        return Seq2SeqModelOutput(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )


# start of ranking prompter code


from contextlib import nullcontext
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from .configuration_rankingprompter import RankingPrompterConfig


@dataclass
class RankingPrompterForPreTrainingOutput:
    loss: torch.FloatTensor = None
    logits: torch.FloatTensor = None


@dataclass
class RankingPrompterOutput:
    loss: torch.FloatTensor = None
    logits: torch.FloatTensor = None
    lm_logits: torch.FloatTensor = None
    loss_lm: torch.FloatTensor = None
    loss_ranking: torch.FloatTensor = None



class RankingPrompterForPreTraining(UMT5Model):
    config_class = RankingPrompterConfig

    _tied_weights_keys = [
        "encoder.embed_tokens.weight",
        "decoder.embed_tokens.weight",
    ]

    def __init__(self, config):
        # encoder, decoder and shared are from UMT5Model
        super().__init__(config)

        # add ranking head
        self.ranking_head = nn.Linear(config.d_model, 1)

        # Initialize weights and apply final processing
        self.post_init()

        # ctx for mixed precision training
        self.ctx = nullcontext()

    def enable_amp_ctx(self, device_type="cuda", dtype=torch.bfloat16):
        self.ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)

    def disable_amp_ctx(self):
        self.ctx = nullcontext()

    def forward(
        self,
        document_input_ids: Optional[torch.LongTensor] = None,
        document_attention_mask: Optional[torch.FloatTensor] = None,
        question_input_ids: Optional[torch.LongTensor] = None,
        question_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], RankingPrompterForPreTrainingOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
            config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
            labels in `[0, ..., config.vocab_size]`

        Returns:

        ```"""
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        # document_input_ids: [batch_size, num_doc, doc_seq_len]
        batch_size, num_doc, doc_seq_len = document_input_ids.shape
        #
        document_input_ids = document_input_ids.view(-1, doc_seq_len)
        # to [batch_size * num_doc, doc_seq_len]
        document_attention_mask = document_attention_mask.view(-1, doc_seq_len)

        # Convert encoder inputs in embeddings if needed
        with self.ctx:
            encoder_outputs = self.encoder(
                input_ids=document_input_ids,
                attention_mask=document_attention_mask,
                return_dict=return_dict,
            )

        document_embeds = encoder_outputs[0]

        # repeat question inputs for each document
        # question_input_ids: [batch_size, question_seq_len]
        question_seq_len = question_input_ids.shape[1]
        question_input_ids_expand = (
            question_input_ids.unsqueeze(1)
            .expand(-1, num_doc, -1)
            .reshape(-1, question_seq_len)
        )  # [batch_size * num_doc, question_seq_len]
        question_attention_mask_expand = (
            question_attention_mask.unsqueeze(1)
            .expand(-1, num_doc, -1)
            .reshape(-1, question_seq_len)
        )  # [batch_size * num_doc, question_seq_len]

        # Decode
        with self.ctx:
            decoder_outputs = self.decoder(
                input_ids=question_input_ids_expand,
                attention_mask=question_attention_mask_expand,
                past_key_values=past_key_values,
                encoder_hidden_states=document_embeds,
                encoder_attention_mask=document_attention_mask,
                use_cache=use_cache,
                return_dict=return_dict,
            )
        # [batch_size * num_doc, soft_prompt_len + question_seq_len, hidden_size]
        sequence_output = decoder_outputs[0]
        # [batch_size * num_doc, soft_prompt_len, hidden_size]
        question_seq_len = sequence_output.size(1)
        # [batch_size, num_doc, soft_prompt_len, hidden_size]
        soft_prompt_output = sequence_output.view(
            batch_size, num_doc, question_seq_len, -1
        )
        question_attention_mask_expand = question_attention_mask_expand.view(
            batch_size, num_doc, question_seq_len
        )
        # apply question attention mask
        soft_prompt_output = soft_prompt_output * question_attention_mask_expand.unsqueeze(-1)

        # [batch_size, num_doc, self.num_soft_prompt_tokens, hidden_size] -> [batch_size, num_doc]
        ranking_logits = self.ranking_head(soft_prompt_output.mean(dim=2)).view(batch_size, num_doc)

        # rank loss
        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
            loss = loss_fct(ranking_logits, labels)

        if not return_dict:
            output = (ranking_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return RankingPrompterForPreTrainingOutput(
            loss=loss,
            logits=ranking_logits
        )


class RankingPrompter(UMT5Model):
    config_class = RankingPrompterConfig

    _tied_weights_keys = [
        "encoder.embed_tokens.weight",
        "decoder.embed_tokens.weight",
    ]

    def __init__(self, config):
        # encoder, decoder and shared are from UMT5Model
        super().__init__(config)

        # add ranking head
        self.ranking_head = nn.Linear(config.d_model, 1)

        # Initialize weights and apply final processing
        self.post_init()

        # ctx for mixed precision training
        self.ctx = nullcontext()

    def enable_amp_ctx(self, device_type="cuda", dtype=torch.bfloat16):
        self.ctx = torch.amp.autocast(device_type=device_type, dtype=dtype)

    def disable_amp_ctx(self):
        self.ctx = nullcontext()

    def encode_document(self, document_input_ids, document_attention_mask):
        # input shape: [batch_size * num_doc, doc_seq_len]
        # Convert encoder inputs in embeddings if needed
        with self.ctx:
            encoder_outputs = self.encoder(
                input_ids=document_input_ids,
                attention_mask=document_attention_mask,
                return_dict=False,
            )
        return encoder_outputs
    
    def decode_answer(
            self, 
            question_input_ids, 
            question_attention_mask, 
            document_embeds, 
            document_attention_mask,
            answer_input_ids=None,
            answer_attention_mask=None
        ):
        if answer_input_ids is not None and answer_attention_mask is not None:
            # append answer input ids to question input ids
            question_input_ids = torch.cat([question_input_ids, answer_input_ids], dim=1)
            question_attention_mask = torch.cat([question_attention_mask, answer_attention_mask], dim=1)

        answer_outputs = self.decoder(
            input_ids=question_input_ids,
            attention_mask=question_attention_mask,
            encoder_hidden_states=document_embeds,
            encoder_attention_mask=document_attention_mask,
            return_dict=True,
        )
        return answer_outputs

    def forward(
        self,
        document_input_ids: Optional[torch.LongTensor] = None,
        document_attention_mask: Optional[torch.FloatTensor] = None,
        question_input_ids: Optional[torch.LongTensor] = None,
        question_attention_mask: Optional[torch.BoolTensor] = None,
        answer_input_ids: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        answer_attention_mask: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.FloatTensor], RankingPrompterOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
            config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
            labels in `[0, ..., config.vocab_size]`

        Returns:

        ```"""
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        if len(document_input_ids.shape) == 2:
            # make [batch_size, doc_seq_len] -> [batch_size, 1, doc_seq_len]
            document_input_ids = document_input_ids.unsqueeze(1)
            document_attention_mask = document_attention_mask.unsqueeze(1)
        # document_input_ids: [batch_size, num_doc, doc_seq_len]
        batch_size, num_doc, doc_seq_len = document_input_ids.shape
        document_input_ids = document_input_ids.view(-1, doc_seq_len)
        # to [batch_size * num_doc, doc_seq_len]
        document_attention_mask = document_attention_mask.view(-1, doc_seq_len)

        encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
        document_embeds = encoder_outputs[0]

        # repeat question inputs for each document
        # question_input_ids: [batch_size, question_seq_len]
        question_seq_len = question_input_ids.shape[1]
        question_input_ids_expand = (
            question_input_ids.unsqueeze(1)
            .expand(-1, num_doc, -1)
            .reshape(-1, question_seq_len)
        )  # [batch_size * num_doc, question_seq_len]
        question_attention_mask_expand = (
            question_attention_mask.unsqueeze(1)
            .expand(-1, num_doc, -1)
            .reshape(-1, question_seq_len)
        )  # [batch_size * num_doc, question_seq_len]

        # Decode
        with self.ctx:
            decoder_outputs = self.decoder(
                input_ids=question_input_ids_expand,
                attention_mask=question_attention_mask_expand,
                encoder_hidden_states=document_embeds,
                encoder_attention_mask=document_attention_mask,
                use_cache=False,
                return_dict=True,
            )
        # [batch_size * num_doc, soft_prompt_len + question_seq_len, hidden_size]
        sequence_output = decoder_outputs.last_hidden_state
        # [batch_size * num_doc, soft_prompt_len, hidden_size]
        question_seq_len = sequence_output.size(1)
        # [batch_size, num_doc, soft_prompt_len, hidden_size]
        soft_prompt_output = sequence_output.view(
            batch_size, num_doc, question_seq_len, -1
        )
        question_attention_mask_expand = question_attention_mask_expand.view(
            batch_size, num_doc, question_seq_len
        )
        # apply question attention mask
        soft_prompt_output = soft_prompt_output * question_attention_mask_expand.unsqueeze(-1)
        # get the real mean by the real length
        soft_prompt_output_mean = soft_prompt_output.sum(dim=2) / question_attention_mask_expand.sum(dim=2, keepdim=True)
        # [batch_size, num_doc, self.num_soft_prompt_tokens, hidden_size] -> [batch_size, num_doc]
        ranking_logits = self.ranking_head(soft_prompt_output_mean).view(batch_size, num_doc)

        # rank loss
        loss_ranking = None
        if labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
            loss_ranking = loss_fct(ranking_logits, labels)
        # append bos token id to question input ids
        question_input_ids = torch.cat(
            [question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
        question_attention_mask = torch.cat(
            [question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
        # only take the first document for answer generation training
        answer_outputs = self.decode_answer(question_input_ids, 
                                            question_attention_mask, 
                                            document_embeds[::num_doc], 
                                            document_attention_mask[::num_doc],
                                            answer_input_ids,
                                            answer_attention_mask)
        # lm loss
        loss_lm = None
        lm_logits = None
        if answer_input_ids is not None:
            # fill in question_input_ids with -100
            question_input_mask = torch.zeros_like(question_input_ids).fill_(-100)
            # mask padding token in answer_input_ids with -100
            answer_input_ids = answer_input_ids.masked_fill(answer_input_ids == self.config.pad_token_id, -100)
            # [batch_size, question_seq_len + answer_seq_len, hidden_size]
            lm_labels = torch.cat([question_input_mask, answer_input_ids], dim=1)[:, 1:].contiguous()
            lm_logits = (answer_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t())[:, :-1, :].contiguous()
            loss_fct = CrossEntropyLoss(ignore_index=-100, label_smoothing=0.1)
            loss_lm = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))

        if loss_ranking is not None and loss_lm is not None:
            loss = loss_ranking + loss_lm
        elif loss_ranking is not None:
            loss = loss_ranking
        elif loss_lm is not None:
            loss = loss_lm
        else:
            loss = None
            
        if not return_dict:
            output = (ranking_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return RankingPrompterOutput(
            loss=loss,
            logits=ranking_logits,
            lm_logits=lm_logits,
            loss_lm=loss_lm,
            loss_ranking=loss_ranking,
        )
    
    def generate_answer(        
        self,
        document_input_ids: Optional[torch.LongTensor] = None,
        document_attention_mask: Optional[torch.FloatTensor] = None,
        question_input_ids: Optional[torch.LongTensor] = None,
        question_attention_mask: Optional[torch.BoolTensor] = None
        ):
        if len(document_input_ids.shape) == 2:
            # make [batch_size, doc_seq_len] -> [batch_size, 1, doc_seq_len]
            document_input_ids = document_input_ids.unsqueeze(1)
            document_attention_mask = document_attention_mask.unsqueeze(1)
        # document_input_ids: [batch_size, num_doc, doc_seq_len]
        batch_size, num_doc, doc_seq_len = document_input_ids.shape
        document_input_ids = document_input_ids.view(-1, doc_seq_len)
        # to [batch_size * num_doc, doc_seq_len]
        document_attention_mask = document_attention_mask.view(-1, doc_seq_len)
        document_embeds = self.encode_document(document_input_ids, document_attention_mask)[0]
        # append bos token id to question input ids
        question_input_ids = torch.cat(
            [question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
        question_attention_mask = torch.cat(
            [question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
        answer_outputs = self.decode_answer(question_input_ids, 
                                            question_attention_mask, 
                                            document_embeds[::num_doc], 
                                            document_attention_mask[:num_doc])
        lm_logits = answer_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t()
        return lm_logits[:, -1:, :]
    

    def compute_ranking_grad_cam(
            self,
            document_input_ids, 
            document_attention_mask, 
            question_input_ids, 
            question_attention_mask,
            block_num=-1,
            reduction="sum"):
        # 设置模型为evaluation模式, 开启保存attention map
        self.eval()
        attention_layer = self.decoder.block[block_num].layer[-2].EncDecAttention
        attention_layer.save_attention = True

        # 正向传播以获取特征图
        encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
        document_embeds = encoder_outputs[0]

        # 正向传播解码器以获取Grad-CAM
        decoder_outputs = self.decoder(
            input_ids=question_input_ids,
            attention_mask=question_attention_mask,
            encoder_hidden_states=document_embeds,
            encoder_attention_mask=document_attention_mask,
            use_cache=False,
            return_dict=True,
        )

        # get grads
        soft_prompt_output = decoder_outputs.last_hidden_state * question_attention_mask.unsqueeze(-1)
        ranking_logits = self.ranking_head(soft_prompt_output.mean(dim=1)).view(-1)
        loss = ranking_logits.sum()
        self.zero_grad()
        loss.backward()

        # compute grad cam
        with torch.no_grad():
            # grads and cams [bsz, num_head, ques_len, doc_len]
            grads = attention_layer.get_attn_gradients()
            cams = attention_layer.get_attention_map()
            gradcams = cams * grads
            # average over heads -> [bsz, ques_len, doc_len]
            gradcams = gradcams.mean(dim=1)
            # apply relu
            gradcams = gradcams.relu()
        # apply question attention mask
        gradcams = gradcams * question_attention_mask.unsqueeze(-1)
        if reduction == "sum":
            gradcams = gradcams.sum(dim=1)
        elif reduction == "mean":
            gradcams = gradcams.mean(dim=1)
        return gradcams


    def compute_lm_grad_cam(
            self,
            document_input_ids, 
            document_attention_mask, 
            question_input_ids, 
            question_attention_mask,
            max_new_tokens=10,
            block_num=-1, 
            reduction="sum"):
        # 设置模型为evaluation模式, 开启保存attention map
        self.eval()
        attention_layer = self.decoder.block[block_num].layer[-2].EncDecAttention
        attention_layer.save_attention = True

        # 正向传播以获取特征图
        encoder_outputs = self.encode_document(document_input_ids, document_attention_mask)
        document_embeds = encoder_outputs[0]

        # append bos token id to question input ids
        question_input_ids = torch.cat(
            [question_input_ids, torch.ones_like(question_input_ids[:, :1]).fill_(self.config.decoder_start_token_id)], dim=1)
        question_attention_mask = torch.cat(
            [question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)


        gradcams_output = []
        tokens_output = []
        for _ in range(max_new_tokens):
            # 正向传播解码器以获取Grad-CAM
            decoder_outputs = self.decoder(
                input_ids=question_input_ids,
                attention_mask=question_attention_mask,
                encoder_hidden_states=document_embeds,
                encoder_attention_mask=document_attention_mask,
                use_cache=False,
                return_dict=True,
            )
            # get grads
            lm_logits = (decoder_outputs.last_hidden_state @ self.decoder.embed_tokens.weight.t())[:, -1:, :].contiguous()
            max_logits, max_indices = lm_logits.max(dim=-1)
            loss = max_logits.sum()
            question_input_ids = torch.cat([question_input_ids, max_indices], dim=-1)
            question_attention_mask = torch.cat([question_attention_mask, torch.ones_like(question_attention_mask[:, :1])], dim=1)
            tokens_output.append(max_indices)

            self.zero_grad()
            loss.backward(retain_graph=True)

            # compute grad cam
            with torch.no_grad():
                # grads and cams [bsz, num_head, ques_len, doc_len]
                grads = attention_layer.get_attn_gradients()
                cams = attention_layer.get_attention_map()
                gradcams = cams[:, :, -1:, :] * grads[:, :, -1:, :]
                # average over heads -> [bsz, 1, doc_len]
                gradcams = gradcams.mean(dim=1)
                # apply relu
                gradcams = gradcams.relu()
                gradcams_output.append(gradcams)
        # concat to [bsz, max_new_tokens, doc_len]
        gradcams_output = torch.cat(gradcams_output, dim=1)
        # concat to [bsz, max_new_tokens]
        tokens_output = torch.cat(tokens_output, dim=1)
        # mask eos token gradcam
        gradcams_output = gradcams_output * (tokens_output != self.config.eos_token_id).unsqueeze(-1)
        if reduction == "sum":
            gradcams_output = gradcams_output.sum(dim=1)
        elif reduction == "mean":
            gradcams_output = gradcams_output.mean(dim=1)
        return tokens_output, gradcams_output


    def split_context_by_token_id(
        self,
        document_input_ids,
        gradcams,
        split_token_id = 310,
    ):
        bsz = document_input_ids.shape[0]
        batch_doc_splits = []
        for i in range(bsz):
            one_doc = document_input_ids[i]
            grad_cam = gradcams[i]
            # find the split token index
            split_idx = (one_doc == split_token_id).nonzero(as_tuple=True)[0]
            # split the document input ids
            num_split = len(split_idx)
            if num_split > 0:
                one_doc_splits = []
                activation_splits = []
                for i in range(num_split):
                    if i == 0:
                        # first split
                        one_doc_splits.append(one_doc[:split_idx[i]])
                        activation = grad_cam[:split_idx[i]].mean()
                        activation_splits.append(activation)
                    else:
                        one_doc_splits.append(one_doc[split_idx[i-1]+1:split_idx[i]])
                        activation = grad_cam[split_idx[i-1]+1:split_idx[i]].mean()
                        activation_splits.append(activation)
                # append the last split
                one_doc_splits.append(one_doc[split_idx[-1]+1:])
                activation = grad_cam[split_idx[-1]+1:].mean()
                activation_splits.append(activation)
            else:
                # no split token in the document
                one_doc_splits = [one_doc]
                activation_splits = [grad_cam.mean()]
            #
            batch_doc_splits.append((one_doc_splits, activation_splits))
        return batch_doc_splits


    def drop_context_by_activation(
        self,
        batch_doc_splits,
        keep_ratio=0.5,
    ):
        # if keep ratio is zero, raise a error
        if keep_ratio == 0 or keep_ratio < 0 or keep_ratio == 0.0:
            raise ValueError("keep ratio should not be zero or negative")
        batch_doc_splits_drop = []
        for one_doc_splits, activation_splits in batch_doc_splits:
            sorted_idx = sorted(range(len(activation_splits)), key=lambda k: activation_splits[k], reverse=True)
            # at least keep one context
            num_drop = max(int(len(sorted_idx) * keep_ratio), 1)
            # keep order of document
            sorted_idx = sorted(sorted_idx[:num_drop])
            one_doc_splits_drop = [one_doc_splits[i] for i in sorted_idx]
            batch_doc_splits_drop.append(one_doc_splits_drop)
        return batch_doc_splits_drop

    def drop_context_by_avg_rank(
        self,
        batch_doc_splits_ranking,
        batch_doc_splits_lm,
        keep_ratio=0.5,
    ):
        # if keep ratio is zero, raise a error
        if keep_ratio == 0 or keep_ratio < 0 or keep_ratio == 0.0:
            raise ValueError("keep ratio should not be zero or negative")
        batch_doc_splits_drop = []
        bsz = len(batch_doc_splits_ranking)
        for i in range(bsz):
            one_doc_splits_ranking, activation_splits_ranking = batch_doc_splits_ranking[i]
            one_doc_splits_lm, activation_splits_lm = batch_doc_splits_lm[i]
            # sort by ranking activation
            ranking_sorted_idx = sorted(range(len(activation_splits_ranking)), key=lambda k: activation_splits_ranking[k], reverse=True)
            lm_sorted_idx = sorted(range(len(activation_splits_lm)), key=lambda k: activation_splits_lm[k], reverse=True)
            # sort by average rank of ranking and lm
            avg_rank = [(ranking_sorted_idx.index(i) + lm_sorted_idx.index(i)) / 2 for i in range(len(ranking_sorted_idx))]
            sorted_idx = sorted(range(len(avg_rank)), key=lambda k: avg_rank[k])
            # at least keep one context
            num_drop = max(int(len(sorted_idx) * keep_ratio), 1)
            # keep order of document
            sorted_idx = sorted(sorted_idx[:num_drop])
            one_doc_splits_drop = [one_doc_splits_ranking[i] for i in sorted_idx]
            batch_doc_splits_drop.append(one_doc_splits_drop)
        return batch_doc_splits_drop


    def compress_context_by_activation(
        self, 
        document_input_ids, 
        gradcams_output,
        keep_ratio=0.5,
    ):
        # split context by split token id
        batch_doc_splits = self.split_context_by_token_id(document_input_ids, gradcams_output)
        # drop context by activation
        batch_doc_splits_drop = self.drop_context_by_activation(batch_doc_splits, keep_ratio)
        return batch_doc_splits_drop


    def compress_context(
        self, 
        document_input_ids, 
        ranking_gradcams,
        lm_gradcams,
        keep_ratio=0.5,
    ):
        # split context by split token id
        batch_doc_splits_ranking = self.split_context_by_token_id(document_input_ids, ranking_gradcams)
        batch_doc_splits_lm = self.split_context_by_token_id(document_input_ids, lm_gradcams)
        # drop context by activation
        batch_doc_splits_drop = self.drop_context_by_avg_rank(
            batch_doc_splits_ranking, batch_doc_splits_lm, keep_ratio)
        return batch_doc_splits_drop