File size: 8,754 Bytes
2c1d053 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import torch
import torch.nn as nn
from torch.nn import functional as F
from textCNN_data import textCNN_param
class Attention1(nn.Module):
"""
1.输入 [N,T,C] -> Linear、Tanh
2. -> [N,T,1] -> unsqueeze
3. -> [N,T] -> Softmax
4. -> [N,T] -> unsqueeze
5. -> [N,1,T] -> repeat
6. -> [N,C,T] -> transpose
7. -> [N,T,C]
"""
def __init__(self, hidden_dim):
super(Attention1, self).__init__()
self.hidden_dim = hidden_dim
self.dense = nn.Linear(hidden_dim, 1)
def forward(self, features):
batch_size, time_step, hidden_dim = 128, 20, 128 # features.size()
weight = nn.Tanh()(self.dense(features)).squeeze(-1)
# mask给负无穷使得权重为0
mask_idx = torch.sign(torch.abs(features).sum(dim=-1))
paddings = torch.ones_like(mask_idx) * (-2 ** 32 + 1)
weight = torch.where(torch.eq(mask_idx, 1), weight, paddings)
weight = nn.Softmax(dim=1)(weight)
weight = weight.unsqueeze(1)
weight = weight.repeat(1, hidden_dim, 1)
weight = weight.transpose(2, 1)
features_attention = weight * features
return features_attention
class Attention2(nn.Module):
"""
1.输入 [N,T,C] -> Linear、Tanh
2. -> [N,T,C] -> transpose
3. -> [N,C,T] -> Softmax
4. -> [N,C,T] -> mean
5. -> [N,T] -> unsqueeze
5. -> [N,1,T] -> expand
6. -> [N,C,T] -> transpose
7. -> [N,T,C]
"""
def __init__(self, hidden_dim):
super(Attention2, self).__init__()
self.hidden_dim = hidden_dim
self.dense = nn.Linear(hidden_dim, hidden_dim)
def forward(self, features, mean=True):
batch_size, time_step, hidden_dim = features.size()
weight = nn.Tanh()(self.dense(features))
# mask给负无穷使得权重为0
mask_idx = torch.sign(torch.abs(features).sum(dim=-1))
mask_idx = mask_idx.unsqueeze(-1).expand(batch_size, time_step,
hidden_dim)
paddings = torch.ones_like(mask_idx) * (-2 ** 32 + 1)
weight = torch.where(torch.eq(mask_idx, 1), weight, paddings)
weight = weight.transpose(2, 1)
weight = nn.Softmax(dim=2)(weight)
if mean:
weight = weight.mean(dim=1)
weight = weight.unsqueeze(1)
weight = weight.repeat(1, hidden_dim, 1)
weight = weight.transpose(2, 1)
features_attention = weight * features
return features_attention
class LayerNorm(nn.Module):
"""
结果和nn.LayerNorm有些出入。
"""
def __init__(self, features, epsilon=1e-8):
super(LayerNorm, self).__init__()
self.beta = nn.Parameter(torch.zeros(features))
self.gamma = nn.Parameter(torch.ones(features))
self.epsilon = epsilon
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
normalized = (x - mean) / (std + self.epsilon)
outputs = self.gamma * normalized + self.beta
return outputs
class Multihead_Attention(nn.Module):
"""
multihead_attention
根据<https://www.github.com/kyubyong/transformer>修改
1.split+cat
2.matmul(q,k)
3.mask k
4.softmax
5.mask q
6.matmul(attn,v)
7.split+cat
8.res q
9.norm
"""
def __init__(self,
hidden_dim,
C_q=None,
C_k=None,
C_v=None,
num_heads=1,
dropout_rate=0.0):
super(Multihead_Attention, self).__init__()
self.hidden_dim = hidden_dim
C_q = C_q if C_q else hidden_dim
C_k = C_k if C_k else hidden_dim
C_v = C_v if C_v else hidden_dim
self.linear_Q = nn.Linear(C_q, hidden_dim) # W_Q
self.linear_K = nn.Linear(C_k, hidden_dim) # W_K
self.linear_V = nn.Linear(C_v, hidden_dim) # W_V
self.num_heads = num_heads
self.norm = nn.LayerNorm(hidden_dim)
self.dropout = nn.Dropout(p=dropout_rate)
def forward(self,
Q, K, V):
"""
:param Q: A 3d tensor with shape of [N, T_q, C_q]
:param K: A 3d tensor with shape of [N, T_k, C_k]
:param V: A 3d tensor with shape of [N, T_v, C_v]
:return:
"""
num_heads = self.num_heads
N = Q.size()[0]
# Linear projections
Q_l = nn.ReLU()(self.linear_Q(Q)) # W_Q x input_Q(x)
K_l = nn.ReLU()(self.linear_K(K)) # W_K x input_K(x)
V_l = nn.ReLU()(self.linear_V(V)) # W_V x input_V(x)
# Split and concat
Q_split = Q_l.split(split_size=self.hidden_dim // num_heads, dim=2)
K_split = K_l.split(split_size=self.hidden_dim // num_heads, dim=2)
V_split = V_l.split(split_size=self.hidden_dim // num_heads, dim=2)
Q_ = torch.cat(Q_split, dim=0) # (h*N, T_q, C/h)
K_ = torch.cat(K_split, dim=0) # (h*N, T_k, C/h)
V_ = torch.cat(V_split, dim=0) # (h*N, T_v, C/h)
# Multiplication
outputs = torch.bmm(Q_, K_.transpose(2, 1)) # Q x K^T score
# Scale
outputs = outputs / (K_.size()[
-1] ** 0.5) # divide by the squared root of dimension K
# Key Masking
key_masks = torch.sign(torch.abs(K).sum(dim=-1)) # (N, T_k)
key_masks = key_masks.repeat(num_heads, 1) # (h*N, T_k)
key_masks = key_masks.unsqueeze(1).repeat(1, Q.size()[1],
1) # (h*N, T_q, T_k)
paddings = torch.ones_like(key_masks) * (-2 ** 32 + 1)
outputs = torch.where(torch.eq(key_masks, 0), paddings,
outputs) # (h*N, T_q, T_k)
# Activation
outputs = nn.Softmax(dim=2)(
outputs) # (h*N, T_q, T_k) Output is the score, activate function softmax it to probability
# Query Masking
query_masks = torch.sign(torch.abs(Q).sum(dim=-1)) # (N, T_q)
query_masks = query_masks.repeat(num_heads, 1) # (h*N, T_q)
query_masks = query_masks.unsqueeze(-1).repeat(1, 1, K.size()[
1]) # (h*N, T_q, T_k)
outputs = outputs * query_masks # broadcasting. (h*N, T_q, T_k)
# Dropouts
outputs = self.dropout(outputs)
# Weighted sum
outputs = torch.bmm(outputs,
V_) # ( h*N, T_q, C/h) multiply the V by scores(output)
# Restore shape
outputs = outputs.split(N, dim=0) # (N, T_q, C)
outputs = torch.cat(outputs, dim=2)
# Residual connection
outputs = outputs + Q_l
# Normalize
outputs = self.norm(outputs) # (N, T_q, C)
return outputs
class my_model(nn.Module):
def __init__(self):
super(my_model, self).__init__()
self.my_embed = nn.Embedding(textCNN_param['vocab_size'],
textCNN_param['embed_dim'], padding_idx=1)
self.my_linear = nn.Linear(256, 5) # 转化后过softmax便代表每个label类别概率
# self.my_linear = nn.Linear(256, 4)
self.dropout = nn.Dropout(0.1)
self.layers = nn.ModuleList(
[Multihead_Attention(hidden_dim=textCNN_param['embed_dim'],
num_heads=1,
dropout_rate=0.1) for _ in range(6)])
def forward(self, sentences):
# sentences = sentences.long()
# sentences.to('cuda:0')
sentences = self.my_embed(sentences)
for layer in self.layers:
sentences = layer(sentences, sentences,
sentences) # sentence 64x20x128
model_output = torch.mean(sentences, dim=1) # 64x128
model_output = self.dropout(model_output)
model_output = self.my_linear(model_output) # 64x4
model_output = F.log_softmax(model_output, dim=1)
# model_output = self.dropout(model_output)
return model_output
if __name__ == '__main__':
features = torch.arange(0, 24)
features = torch.where(features < 20, features,
torch.zeros_like(features))
features = features.view([2, 3, 4]).float()
print(features)
print(features.size())
attention1 = Attention1(hidden_dim=features.size()[-1])
print(attention1(features))
print('size is', attention1(features).size()[-1])
attention2 = Attention2(hidden_dim=features.size()[-1])
print(attention2(features))
attention3 = Multihead_Attention(hidden_dim=features.size()[-1],
num_heads=2,
dropout_rate=0.0)
print(attention3(features, features, features))
|