File size: 8,754 Bytes
2c1d053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import torch
import torch.nn as nn
from torch.nn import functional as F
from textCNN_data import textCNN_param


class Attention1(nn.Module):
    """
    1.输入 [N,T,C] -> Linear、Tanh
    2. -> [N,T,1] -> unsqueeze
    3. -> [N,T] -> Softmax
    4. -> [N,T] -> unsqueeze
    5. -> [N,1,T] -> repeat
    6. -> [N,C,T] -> transpose
    7. -> [N,T,C]
    """

    def __init__(self, hidden_dim):
        super(Attention1, self).__init__()
        self.hidden_dim = hidden_dim
        self.dense = nn.Linear(hidden_dim, 1)

    def forward(self, features):
        batch_size, time_step, hidden_dim = 128, 20, 128  # features.size()
        weight = nn.Tanh()(self.dense(features)).squeeze(-1)

        # mask给负无穷使得权重为0
        mask_idx = torch.sign(torch.abs(features).sum(dim=-1))
        paddings = torch.ones_like(mask_idx) * (-2 ** 32 + 1)
        weight = torch.where(torch.eq(mask_idx, 1), weight, paddings)

        weight = nn.Softmax(dim=1)(weight)
        weight = weight.unsqueeze(1)
        weight = weight.repeat(1, hidden_dim, 1)
        weight = weight.transpose(2, 1)
        features_attention = weight * features

        return features_attention


class Attention2(nn.Module):
    """
    1.输入 [N,T,C] -> Linear、Tanh
    2. -> [N,T,C] -> transpose
    3. -> [N,C,T] -> Softmax
    4. -> [N,C,T] -> mean
    5. -> [N,T] -> unsqueeze
    5. -> [N,1,T] -> expand
    6. -> [N,C,T] -> transpose
    7. -> [N,T,C]
    """

    def __init__(self, hidden_dim):
        super(Attention2, self).__init__()
        self.hidden_dim = hidden_dim
        self.dense = nn.Linear(hidden_dim, hidden_dim)

    def forward(self, features, mean=True):
        batch_size, time_step, hidden_dim = features.size()
        weight = nn.Tanh()(self.dense(features))

        # mask给负无穷使得权重为0
        mask_idx = torch.sign(torch.abs(features).sum(dim=-1))
        mask_idx = mask_idx.unsqueeze(-1).expand(batch_size, time_step,
                                                 hidden_dim)
        paddings = torch.ones_like(mask_idx) * (-2 ** 32 + 1)
        weight = torch.where(torch.eq(mask_idx, 1), weight, paddings)

        weight = weight.transpose(2, 1)
        weight = nn.Softmax(dim=2)(weight)
        if mean:
            weight = weight.mean(dim=1)
            weight = weight.unsqueeze(1)
            weight = weight.repeat(1, hidden_dim, 1)
        weight = weight.transpose(2, 1)
        features_attention = weight * features

        return features_attention


class LayerNorm(nn.Module):
    """
    结果和nn.LayerNorm有些出入。
    """

    def __init__(self, features, epsilon=1e-8):
        super(LayerNorm, self).__init__()
        self.beta = nn.Parameter(torch.zeros(features))
        self.gamma = nn.Parameter(torch.ones(features))
        self.epsilon = epsilon

    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        normalized = (x - mean) / (std + self.epsilon)
        outputs = self.gamma * normalized + self.beta

        return outputs


class Multihead_Attention(nn.Module):
    """
    multihead_attention
    根据<https://www.github.com/kyubyong/transformer>修改
    1.split+cat
    2.matmul(q,k)
    3.mask k
    4.softmax
    5.mask q
    6.matmul(attn,v)
    7.split+cat
    8.res q
    9.norm
    """

    def __init__(self,
                 hidden_dim,
                 C_q=None,
                 C_k=None,
                 C_v=None,
                 num_heads=1,
                 dropout_rate=0.0):
        super(Multihead_Attention, self).__init__()
        self.hidden_dim = hidden_dim
        C_q = C_q if C_q else hidden_dim
        C_k = C_k if C_k else hidden_dim
        C_v = C_v if C_v else hidden_dim
        self.linear_Q = nn.Linear(C_q, hidden_dim)  # W_Q
        self.linear_K = nn.Linear(C_k, hidden_dim)  # W_K
        self.linear_V = nn.Linear(C_v, hidden_dim)  # W_V
        self.num_heads = num_heads
        self.norm = nn.LayerNorm(hidden_dim)
        self.dropout = nn.Dropout(p=dropout_rate)

    def forward(self,
                Q, K, V):
        """
        :param Q: A 3d tensor with shape of [N, T_q, C_q]
        :param K: A 3d tensor with shape of [N, T_k, C_k]
        :param V: A 3d tensor with shape of [N, T_v, C_v]
        :return:
        """
        num_heads = self.num_heads
        N = Q.size()[0]

        # Linear projections
        Q_l = nn.ReLU()(self.linear_Q(Q))  # W_Q x input_Q(x)
        K_l = nn.ReLU()(self.linear_K(K))  # W_K x input_K(x)
        V_l = nn.ReLU()(self.linear_V(V))  # W_V x input_V(x)

        # Split and concat
        Q_split = Q_l.split(split_size=self.hidden_dim // num_heads, dim=2)
        K_split = K_l.split(split_size=self.hidden_dim // num_heads, dim=2)
        V_split = V_l.split(split_size=self.hidden_dim // num_heads, dim=2)

        Q_ = torch.cat(Q_split, dim=0)  # (h*N, T_q, C/h)
        K_ = torch.cat(K_split, dim=0)  # (h*N, T_k, C/h)
        V_ = torch.cat(V_split, dim=0)  # (h*N, T_v, C/h)

        # Multiplication
        outputs = torch.bmm(Q_, K_.transpose(2, 1))  # Q x K^T score

        # Scale
        outputs = outputs / (K_.size()[
                                 -1] ** 0.5)  # divide by the squared root of dimension K

        # Key Masking
        key_masks = torch.sign(torch.abs(K).sum(dim=-1))  # (N, T_k)
        key_masks = key_masks.repeat(num_heads, 1)  # (h*N, T_k)
        key_masks = key_masks.unsqueeze(1).repeat(1, Q.size()[1],
                                                  1)  # (h*N, T_q, T_k)

        paddings = torch.ones_like(key_masks) * (-2 ** 32 + 1)
        outputs = torch.where(torch.eq(key_masks, 0), paddings,
                              outputs)  # (h*N, T_q, T_k)

        # Activation
        outputs = nn.Softmax(dim=2)(
            outputs)  # (h*N, T_q, T_k) Output is the score, activate function softmax it to probability

        # Query Masking
        query_masks = torch.sign(torch.abs(Q).sum(dim=-1))  # (N, T_q)
        query_masks = query_masks.repeat(num_heads, 1)  # (h*N, T_q)
        query_masks = query_masks.unsqueeze(-1).repeat(1, 1, K.size()[
            1])  # (h*N, T_q, T_k)
        outputs = outputs * query_masks  # broadcasting. (h*N, T_q, T_k)

        # Dropouts
        outputs = self.dropout(outputs)

        # Weighted sum
        outputs = torch.bmm(outputs,
                            V_)  # ( h*N, T_q, C/h) multiply the V by scores(output)

        # Restore shape
        outputs = outputs.split(N, dim=0)  # (N, T_q, C)
        outputs = torch.cat(outputs, dim=2)

        # Residual connection
        outputs = outputs + Q_l

        # Normalize
        outputs = self.norm(outputs)  # (N, T_q, C)

        return outputs


class my_model(nn.Module):
    def __init__(self):
        super(my_model, self).__init__()
        self.my_embed = nn.Embedding(textCNN_param['vocab_size'],
                                     textCNN_param['embed_dim'], padding_idx=1)
        self.my_linear = nn.Linear(256, 5)  # 转化后过softmax便代表每个label类别概率
        # self.my_linear = nn.Linear(256, 4)
        self.dropout = nn.Dropout(0.1)
        self.layers = nn.ModuleList(
            [Multihead_Attention(hidden_dim=textCNN_param['embed_dim'],
                                 num_heads=1,
                                 dropout_rate=0.1) for _ in range(6)])

    def forward(self, sentences):
        # sentences = sentences.long()
        # sentences.to('cuda:0')
        sentences = self.my_embed(sentences)
        for layer in self.layers:
            sentences = layer(sentences, sentences,
                              sentences)  # sentence 64x20x128

        model_output = torch.mean(sentences, dim=1)  # 64x128
        model_output = self.dropout(model_output)
        model_output = self.my_linear(model_output)  # 64x4
        model_output = F.log_softmax(model_output, dim=1)
        # model_output = self.dropout(model_output)
        return model_output


if __name__ == '__main__':
    features = torch.arange(0, 24)

    features = torch.where(features < 20, features,
                           torch.zeros_like(features))
    features = features.view([2, 3, 4]).float()
    print(features)
    print(features.size())
    attention1 = Attention1(hidden_dim=features.size()[-1])
    print(attention1(features))
    print('size is', attention1(features).size()[-1])

    attention2 = Attention2(hidden_dim=features.size()[-1])
    print(attention2(features))

    attention3 = Multihead_Attention(hidden_dim=features.size()[-1],
                                     num_heads=2,
                                     dropout_rate=0.0)
    print(attention3(features, features, features))