File size: 1,667 Bytes
dd88219
 
 
 
 
 
9af804d
dd88219
 
 
 
 
 
 
 
 
 
58bd18a
dd88219
 
 
 
 
789d3a3
dd88219
 
 
 
 
 
 
e6ed28b
76f8cc6
eedae1f
76f8cc6
eedae1f
dd88219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
base_model: xlm-roberta-base
model-index:
- name: xlmRoberta-for-VietnameseQA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlmRoberta-for-VietnameseQA

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the UIT-Viquad_v2 dataset. 
It achieves the following results on the evaluation set:
- Loss: 0.8315

## Model description

Fine-tuned by Honganh Nguyen (FPTU AI Club).

## Intended uses & limitations

More information needed

## Training and evaluation data

Credits to Viet Nguyen (FPTU AI Club) for the training and evaluation data.

Training data: https://github.com/vietnguyen012/QA_viuit/blob/main/train.json

Evaluation data: https://github.com/vietnguyen012/QA_viuit/blob/main/trial/trial.json

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5701        | 1.0   | 2534 | 1.2220          |
| 1.2942        | 2.0   | 5068 | 0.9698          |
| 1.0693        | 3.0   | 7602 | 0.8315          |


### Framework versions

- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.17.0
- Tokenizers 0.10.3