File size: 16,000 Bytes
27a8d85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0ee5a16670>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7f0ee5a174c0>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "observation_space": {
        ":type:": "<class 'gym.spaces.dict.Dict'>",
        ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
        "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gym.spaces.box.Box'>",
        ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_np_random": null
    },
    "n_envs": 4,
    "num_timesteps": 5000000,
    "_total_timesteps": 5000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1679620859304931084,
    "learning_rate": 0.0001,
    "tensorboard_log": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
    },
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIy3MPm0AZ7oQhAk/Iy3MPm0AZ7oQhAk/Iy3MPm0AZ7oQhAk/Iy3MPm0AZ7oQhAk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAS/hyv2TQiT8JoaS/UaQEP5Muab/48iS/O1yGv30uiz+WkSS/t/ZpPxf4P76UPuE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAjLcw+bQBnuhCECT8AsAg98ZgruTz6Iz0jLcw+bQBnuhCECT8AsAg98ZgruTz6Iz0jLcw+bQBnuhCECT8AsAg98ZgruTz6Iz0jLcw+bQBnuhCECT8AsAg98ZgruTz6Iz2UaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 0.39878187 -0.0008812   0.53717136]\n [ 0.39878187 -0.0008812   0.53717136]\n [ 0.39878187 -0.0008812   0.53717136]\n [ 0.39878187 -0.0008812   0.53717136]]",
        "desired_goal": "[[-0.94910115  1.0766721  -1.2861644 ]\n [ 0.51813227 -0.9108669  -0.6443324 ]\n [-1.0496897   1.0873562  -0.64284647]\n [ 0.9139208  -0.18746983  0.43993056]]",
        "observation": "[[ 3.9878187e-01 -8.8120141e-04  5.3717136e-01  3.3370972e-02\n  -1.6364806e-04  4.0033564e-02]\n [ 3.9878187e-01 -8.8120141e-04  5.3717136e-01  3.3370972e-02\n  -1.6364806e-04  4.0033564e-02]\n [ 3.9878187e-01 -8.8120141e-04  5.3717136e-01  3.3370972e-02\n  -1.6364806e-04  4.0033564e-02]\n [ 3.9878187e-01 -8.8120141e-04  5.3717136e-01  3.3370972e-02\n  -1.6364806e-04  4.0033564e-02]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAj3+wvRDHA76LRVs+iWnbPfp5LD27pAY+fEpXvFjqtz3IDOY9xAklvBpn0T32XXo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[-0.0861808  -0.12868905  0.21413247]\n [ 0.10713489  0.04210851  0.13148777]\n [-0.01314032  0.08980244  0.11232907]\n [-0.01007313  0.10224743  0.24449906]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ2iTwyed3r+UhpRSlIwBbJRLMowBdJRHQM4h1WU8mrt1fZQoaAZoCWgPQwgiUWhZ94/Yv5SGlFKUaBVLMmgWR0DOIcZfUnXvdX2UKGgGaAloD0MIUd1c/G1P67+UhpRSlGgVSzJoFkdAziG2oIfKZHV9lChoBmgJaA9DCAVNS6yMRtq/lIaUUpRoFUsyaBZHQM4hp77CSA91fZQoaAZoCWgPQwhkk/yIX7Hfv5SGlFKUaBVLMmgWR0DOIkKdSVGDdX2UKGgGaAloD0MIZ7lsdM5P4L+UhpRSlGgVSzJoFkdAziIzkQwsXnV9lChoBmgJaA9DCLCNeLKbGdi/lIaUUpRoFUsyaBZHQM4iI7yYoiN1fZQoaAZoCWgPQwiEYcCSq1jVv5SGlFKUaBVLMmgWR0DOIhTvVmSRdX2UKGgGaAloD0MIQpQvaCGB47+UhpRSlGgVSzJoFkdAziKx6+nIhnV9lChoBmgJaA9DCPoOfuIA+ti/lIaUUpRoFUsyaBZHQM4iouCGvfV1fZQoaAZoCWgPQwio4sYt5ufgv5SGlFKUaBVLMmgWR0DOIpMI1LrYdX2UKGgGaAloD0MIybCKNzKP2r+UhpRSlGgVSzJoFkdAziKEPhhpg3V9lChoBmgJaA9DCFCqfToeM+K/lIaUUpRoFUsyaBZHQM4jI7vXsgN1fZQoaAZoCWgPQwhxICQLmMDtv5SGlFKUaBVLMmgWR0DOIxSmXPZ7dX2UKGgGaAloD0MI9Z81P/7S2L+UhpRSlGgVSzJoFkdAziME6wt8NXV9lChoBmgJaA9DCB/2QgHbQeK/lIaUUpRoFUsyaBZHQM4i9h9b5dp1fZQoaAZoCWgPQwik/+VatADkv5SGlFKUaBVLMmgWR0DOI5nDWK/EdX2UKGgGaAloD0MIfA4sR8hA4L+UhpRSlGgVSzJoFkdAziOK1UEPlXV9lChoBmgJaA9DCEAUzJiCNeC/lIaUUpRoFUsyaBZHQM4jexZEDyR1fZQoaAZoCWgPQwi3eeOkMO/hv5SGlFKUaBVLMmgWR0DOI2xR2r4ndX2UKGgGaAloD0MIGCR9WkV/5L+UhpRSlGgVSzJoFkdAziPyhqTKT3V9lChoBmgJaA9DCGoSvCGNCtq/lIaUUpRoFUsyaBZHQM4j41J+UhV1fZQoaAZoCWgPQwiiCRSxiGHlv5SGlFKUaBVLMmgWR0DOI9NUADJVdX2UKGgGaAloD0MI+7K0U3O52L+UhpRSlGgVSzJoFkdAziPEUMXrMXV9lChoBmgJaA9DCFNcVfZdkeC/lIaUUpRoFUsyaBZHQM4kNofSx7l1fZQoaAZoCWgPQwiAJy1cVmHYv5SGlFKUaBVLMmgWR0DOJCdMXaakdX2UKGgGaAloD0MImS7E6o8w47+UhpRSlGgVSzJoFkdAziQXSOR1YHV9lChoBmgJaA9DCCOgwhGkUuO/lIaUUpRoFUsyaBZHQM4kCDUd7v51fZQoaAZoCWgPQwhEvkupS8biv5SGlFKUaBVLMmgWR0DOJHuHzpX7dX2UKGgGaAloD0MInu488Zyt47+UhpRSlGgVSzJoFkdAziRsTaCcw3V9lChoBmgJaA9DCINqgxPRL+O/lIaUUpRoFUsyaBZHQM4kXFCCz1N1fZQoaAZoCWgPQwhhw9MrZRnMv5SGlFKUaBVLMmgWR0DOJE1CVryldX2UKGgGaAloD0MI2q7QB8sY8b+UhpRSlGgVSzJoFkdAziS/RceKbnV9lChoBmgJaA9DCPM7TWa8rdq/lIaUUpRoFUsyaBZHQM4ksA2AG0N1fZQoaAZoCWgPQwgyy54ENufkv5SGlFKUaBVLMmgWR0DOJKAVbiZOdX2UKGgGaAloD0MIEarU7IFW3L+UhpRSlGgVSzJoFkdAziSRBhx5s3V9lChoBmgJaA9DCLq+DwcJUdK/lIaUUpRoFUsyaBZHQM4lBLYwqRV1fZQoaAZoCWgPQwhNZyeDo+Tev5SGlFKUaBVLMmgWR0DOJPV3Y+SsdX2UKGgGaAloD0MISRRa1v1j5b+UhpRSlGgVSzJoFkdAziTlhBqsVHV9lChoBmgJaA9DCBoaTwRxHti/lIaUUpRoFUsyaBZHQM4k1oTXarZ1fZQoaAZoCWgPQwjqI/CHn//ev5SGlFKUaBVLMmgWR0DOJUi+L3sYdX2UKGgGaAloD0MItWytLxLa3b+UhpRSlGgVSzJoFkdAziU5h86V+3V9lChoBmgJaA9DCO4+x0eLM9G/lIaUUpRoFUsyaBZHQM4lKYcNpdt1fZQoaAZoCWgPQwiUpGsm32ziv5SGlFKUaBVLMmgWR0DOJRp44ZMtdX2UKGgGaAloD0MIoidlUkMb4b+UhpRSlGgVSzJoFkdAziWMexOclXV9lChoBmgJaA9DCDEjvD0IAdq/lIaUUpRoFUsyaBZHQM4lfUPxx1h1fZQoaAZoCWgPQwhTspyE0pfvv5SGlFKUaBVLMmgWR0DOJW1BUrCndX2UKGgGaAloD0MIMgG/RpIg37+UhpRSlGgVSzJoFkdAziVeMa0hNnV9lChoBmgJaA9DCI6QgTy7/Oa/lIaUUpRoFUsyaBZHQM4l0EiMYMx1fZQoaAZoCWgPQwik/nqFBXfsv5SGlFKUaBVLMmgWR0DOJcEMmWt2dX2UKGgGaAloD0MIuOf500Z14L+UhpRSlGgVSzJoFkdAziWxE1EVnHV9lChoBmgJaA9DCPSj4ZS5eeC/lIaUUpRoFUsyaBZHQM4lohUaQ3h1fZQoaAZoCWgPQwjlJ9U+HY/Vv5SGlFKUaBVLMmgWR0DOJhXr4WUKdX2UKGgGaAloD0MItY0/UdmwzL+UhpRSlGgVSzJoFkdAziYGq4pc5nV9lChoBmgJaA9DCEgXm1YKgdC/lIaUUpRoFUsyaBZHQM4l9rk0aZR1fZQoaAZoCWgPQwiz74rgf6vlv5SGlFKUaBVLMmgWR0DOJeel2vB8dX2UKGgGaAloD0MIMxgjEoWW4L+UhpRSlGgVSzJoFkdAziZaRU3n6nV9lChoBmgJaA9DCPQ1y2Wj8+O/lIaUUpRoFUsyaBZHQM4mSwzDXOJ1fZQoaAZoCWgPQwj6KCMuAA3sv5SGlFKUaBVLMmgWR0DOJjsOEug6dX2UKGgGaAloD0MICyWTUztD47+UhpRSlGgVSzJoFkdAziYsCNjslnV9lChoBmgJaA9DCHzUX6+w4NW/lIaUUpRoFUsyaBZHQM4moU8/2TR1fZQoaAZoCWgPQwiUv3tHjQnkv5SGlFKUaBVLMmgWR0DOJpIOrhitdX2UKGgGaAloD0MIGJmAXyNJ2L+UhpRSlGgVSzJoFkdAziaCFIuoP3V9lChoBmgJaA9DCAsJGF3eHMC/lIaUUpRoFUsyaBZHQM4mcv3BYV91fZQoaAZoCWgPQwjL9baZCnHkv5SGlFKUaBVLMmgWR0DOJuVi+cpcdX2UKGgGaAloD0MI58OzBBkB5L+UhpRSlGgVSzJoFkdAzibWK+BYm3V9lChoBmgJaA9DCNKNsKiI09u/lIaUUpRoFUsyaBZHQM4mxjsdDIB1fZQoaAZoCWgPQwiU+UffpGngv5SGlFKUaBVLMmgWR0DOJrcyN4qxdX2UKGgGaAloD0MI+grSjEVT4b+UhpRSlGgVSzJoFkdAzicppcHGCXV9lChoBmgJaA9DCKhwBKkUO+G/lIaUUpRoFUsyaBZHQM4nGmlhw2l1fZQoaAZoCWgPQwgdylAVU+njv5SGlFKUaBVLMmgWR0DOJwpwMpgDdX2UKGgGaAloD0MIf6KyYU1l3r+UhpRSlGgVSzJoFkdAzib7ZQpF1HV9lChoBmgJaA9DCPUsCOV9HOG/lIaUUpRoFUsyaBZHQM4nbaFdszl1fZQoaAZoCWgPQwi0k8FR8urGv5SGlFKUaBVLMmgWR0DOJ15vYODrdX2UKGgGaAloD0MIDt3sD5Tb1b+UhpRSlGgVSzJoFkdAzidObqhUR3V9lChoBmgJaA9DCMTt0LAYdc2/lIaUUpRoFUsyaBZHQM4nP10tAcF1fZQoaAZoCWgPQwjX+Ez2z9Pgv5SGlFKUaBVLMmgWR0DOJ7FhJAdGdX2UKGgGaAloD0MIKGN8mL1s4b+UhpRSlGgVSzJoFkdAzieiG+K0lnV9lChoBmgJaA9DCKuvrgrUYsa/lIaUUpRoFUsyaBZHQM4nkh2W6bx1fZQoaAZoCWgPQwh5Htydtdvcv5SGlFKUaBVLMmgWR0DOJ4MS/TLGdX2UKGgGaAloD0MIyJqRQe4iuL+UhpRSlGgVSzJoFkdAzif0B6KLsXV9lChoBmgJaA9DCKx0d50N+dW/lIaUUpRoFUsyaBZHQM4n5M0P6Kt1fZQoaAZoCWgPQwhAbVSnA9ngv5SGlFKUaBVLMmgWR0DOJ9THMlkZdX2UKGgGaAloD0MIlGsKZHYW07+UhpRSlGgVSzJoFkdAzifFt3OfNHV9lChoBmgJaA9DCC5U/rW8ctW/lIaUUpRoFUsyaBZHQM4oQ0z0pVl1fZQoaAZoCWgPQwg1KQXdXtLmv5SGlFKUaBVLMmgWR0DOKDRMnJDFdX2UKGgGaAloD0MIhlW8kXnk4b+UhpRSlGgVSzJoFkdAzigkUnogWHV9lChoBmgJaA9DCIVBmUaTC+6/lIaUUpRoFUsyaBZHQM4oFU1Q66t1fZQoaAZoCWgPQwgyx/KuekDiv5SGlFKUaBVLMmgWR0DOKI/Y8Md+dX2UKGgGaAloD0MInb0z2qok37+UhpRSlGgVSzJoFkdAziiAqqfe13V9lChoBmgJaA9DCIKsp1Zf3eK/lIaUUpRoFUsyaBZHQM4ocNIbwSd1fZQoaAZoCWgPQwiMSX8vhYfhv5SGlFKUaBVLMmgWR0DOKGHFcY65dX2UKGgGaAloD0MI0uC2tvC817+UhpRSlGgVSzJoFkdAzijaExqO93V9lChoBmgJaA9DCNvgRPRr69u/lIaUUpRoFUsyaBZHQM4oywiiZfF1fZQoaAZoCWgPQwim07oNar/Pv5SGlFKUaBVLMmgWR0DOKLtU4rBkdX2UKGgGaAloD0MIJ2n+mNam4L+UhpRSlGgVSzJoFkdAziisflp48nV9lChoBmgJaA9DCMb3xaUqbdq/lIaUUpRoFUsyaBZHQM4pSWCNCJJ1fZQoaAZoCWgPQwjk84qnHmnTv5SGlFKUaBVLMmgWR0DOKTpjWkJsdX2UKGgGaAloD0MI4Qz+fjFb2r+UhpRSlGgVSzJoFkdAzikqh24d63V9lChoBmgJaA9DCF/SGK2jqtm/lIaUUpRoFUsyaBZHQM4pG6FmFrV1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 250000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false
}