Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697664318.46dc0c540dd0.3341.13 +3 -0
- test.tsv +0 -0
- training.log +245 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f37cfbe7e1895f25b66ae3a8a01e0d5cca89e6f5b2968bf5085176a44d7ca8d
|
3 |
+
size 19045922
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 21:25:50 0.0000 0.8594 0.2119 0.3472 0.2557 0.2945 0.1885
|
3 |
+
2 21:26:22 0.0000 0.2546 0.1665 0.3849 0.4276 0.4051 0.2773
|
4 |
+
3 21:26:55 0.0000 0.2046 0.1502 0.5165 0.5486 0.5321 0.3871
|
5 |
+
4 21:27:28 0.0000 0.1797 0.1447 0.5793 0.5577 0.5683 0.4206
|
6 |
+
5 21:28:00 0.0000 0.1629 0.1397 0.5904 0.6131 0.6016 0.4574
|
7 |
+
6 21:28:32 0.0000 0.1536 0.1435 0.6024 0.6256 0.6138 0.4698
|
8 |
+
7 21:29:04 0.0000 0.1432 0.1461 0.6077 0.6290 0.6181 0.4724
|
9 |
+
8 21:29:37 0.0000 0.1354 0.1463 0.5910 0.6357 0.6125 0.4679
|
10 |
+
9 21:30:09 0.0000 0.1302 0.1465 0.5956 0.6482 0.6208 0.4767
|
11 |
+
10 21:30:42 0.0000 0.1267 0.1485 0.5973 0.6391 0.6175 0.4724
|
runs/events.out.tfevents.1697664318.46dc0c540dd0.3341.13
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:27ff5615eacfa5c88fa16d9156012558280eb457efae93b70a709431c4d23e74
|
3 |
+
size 1108164
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-18 21:25:18,822 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-18 21:25:18,823 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-18 21:25:18,823 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-18 21:25:18,823 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-18 21:25:18,823 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-18 21:25:18,823 Train: 7936 sentences
|
55 |
+
2023-10-18 21:25:18,823 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-18 21:25:18,823 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-18 21:25:18,823 Training Params:
|
58 |
+
2023-10-18 21:25:18,823 - learning_rate: "5e-05"
|
59 |
+
2023-10-18 21:25:18,823 - mini_batch_size: "4"
|
60 |
+
2023-10-18 21:25:18,823 - max_epochs: "10"
|
61 |
+
2023-10-18 21:25:18,823 - shuffle: "True"
|
62 |
+
2023-10-18 21:25:18,823 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-18 21:25:18,823 Plugins:
|
64 |
+
2023-10-18 21:25:18,823 - TensorboardLogger
|
65 |
+
2023-10-18 21:25:18,823 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-18 21:25:18,823 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-18 21:25:18,823 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-18 21:25:18,823 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-18 21:25:18,823 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-18 21:25:18,823 Computation:
|
71 |
+
2023-10-18 21:25:18,824 - compute on device: cuda:0
|
72 |
+
2023-10-18 21:25:18,824 - embedding storage: none
|
73 |
+
2023-10-18 21:25:18,824 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-18 21:25:18,824 Model training base path: "hmbench-icdar/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
|
75 |
+
2023-10-18 21:25:18,824 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-18 21:25:18,824 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-18 21:25:18,824 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-18 21:25:21,871 epoch 1 - iter 198/1984 - loss 3.05001127 - time (sec): 3.05 - samples/sec: 5386.70 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-18 21:25:24,628 epoch 1 - iter 396/1984 - loss 2.47724953 - time (sec): 5.80 - samples/sec: 5922.14 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-18 21:25:27,667 epoch 1 - iter 594/1984 - loss 1.93619435 - time (sec): 8.84 - samples/sec: 5709.43 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-18 21:25:30,706 epoch 1 - iter 792/1984 - loss 1.58401951 - time (sec): 11.88 - samples/sec: 5618.92 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-18 21:25:33,758 epoch 1 - iter 990/1984 - loss 1.35401175 - time (sec): 14.93 - samples/sec: 5563.79 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-18 21:25:36,794 epoch 1 - iter 1188/1984 - loss 1.20410373 - time (sec): 17.97 - samples/sec: 5524.66 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-18 21:25:39,832 epoch 1 - iter 1386/1984 - loss 1.09303606 - time (sec): 21.01 - samples/sec: 5470.81 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-18 21:25:42,910 epoch 1 - iter 1584/1984 - loss 0.99807468 - time (sec): 24.09 - samples/sec: 5451.75 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-18 21:25:45,923 epoch 1 - iter 1782/1984 - loss 0.92290600 - time (sec): 27.10 - samples/sec: 5442.29 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-18 21:25:49,008 epoch 1 - iter 1980/1984 - loss 0.86043295 - time (sec): 30.18 - samples/sec: 5425.81 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-18 21:25:49,068 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-18 21:25:49,068 EPOCH 1 done: loss 0.8594 - lr: 0.000050
|
90 |
+
2023-10-18 21:25:50,560 DEV : loss 0.21192067861557007 - f1-score (micro avg) 0.2945
|
91 |
+
2023-10-18 21:25:50,578 saving best model
|
92 |
+
2023-10-18 21:25:50,613 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-18 21:25:53,727 epoch 2 - iter 198/1984 - loss 0.30950366 - time (sec): 3.11 - samples/sec: 4927.98 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-18 21:25:56,796 epoch 2 - iter 396/1984 - loss 0.28151013 - time (sec): 6.18 - samples/sec: 5145.74 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-18 21:25:59,865 epoch 2 - iter 594/1984 - loss 0.28431083 - time (sec): 9.25 - samples/sec: 5342.97 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-18 21:26:02,940 epoch 2 - iter 792/1984 - loss 0.27867074 - time (sec): 12.33 - samples/sec: 5398.12 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-18 21:26:06,023 epoch 2 - iter 990/1984 - loss 0.27356192 - time (sec): 15.41 - samples/sec: 5362.82 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-18 21:26:09,040 epoch 2 - iter 1188/1984 - loss 0.26808423 - time (sec): 18.43 - samples/sec: 5380.47 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-18 21:26:11,822 epoch 2 - iter 1386/1984 - loss 0.26113663 - time (sec): 21.21 - samples/sec: 5451.69 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-18 21:26:14,900 epoch 2 - iter 1584/1984 - loss 0.25788671 - time (sec): 24.29 - samples/sec: 5438.15 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-18 21:26:17,947 epoch 2 - iter 1782/1984 - loss 0.25525919 - time (sec): 27.33 - samples/sec: 5421.86 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-18 21:26:20,762 epoch 2 - iter 1980/1984 - loss 0.25444187 - time (sec): 30.15 - samples/sec: 5429.33 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-18 21:26:20,822 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-18 21:26:20,822 EPOCH 2 done: loss 0.2546 - lr: 0.000044
|
105 |
+
2023-10-18 21:26:22,634 DEV : loss 0.16650356352329254 - f1-score (micro avg) 0.4051
|
106 |
+
2023-10-18 21:26:22,654 saving best model
|
107 |
+
2023-10-18 21:26:22,690 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-18 21:26:25,787 epoch 3 - iter 198/1984 - loss 0.21161120 - time (sec): 3.10 - samples/sec: 5483.96 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-18 21:26:28,837 epoch 3 - iter 396/1984 - loss 0.20257772 - time (sec): 6.15 - samples/sec: 5328.22 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-18 21:26:31,767 epoch 3 - iter 594/1984 - loss 0.21363359 - time (sec): 9.08 - samples/sec: 5582.96 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-18 21:26:34,842 epoch 3 - iter 792/1984 - loss 0.20789207 - time (sec): 12.15 - samples/sec: 5470.71 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-18 21:26:37,879 epoch 3 - iter 990/1984 - loss 0.21055604 - time (sec): 15.19 - samples/sec: 5444.07 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-18 21:26:40,954 epoch 3 - iter 1188/1984 - loss 0.20723027 - time (sec): 18.26 - samples/sec: 5444.07 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-18 21:26:44,031 epoch 3 - iter 1386/1984 - loss 0.20657276 - time (sec): 21.34 - samples/sec: 5424.20 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-18 21:26:47,055 epoch 3 - iter 1584/1984 - loss 0.20547288 - time (sec): 24.36 - samples/sec: 5434.88 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-18 21:26:50,070 epoch 3 - iter 1782/1984 - loss 0.20632094 - time (sec): 27.38 - samples/sec: 5413.63 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-18 21:26:53,106 epoch 3 - iter 1980/1984 - loss 0.20495296 - time (sec): 30.41 - samples/sec: 5376.32 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-18 21:26:53,176 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-18 21:26:53,176 EPOCH 3 done: loss 0.2046 - lr: 0.000039
|
120 |
+
2023-10-18 21:26:55,394 DEV : loss 0.15022146701812744 - f1-score (micro avg) 0.5321
|
121 |
+
2023-10-18 21:26:55,413 saving best model
|
122 |
+
2023-10-18 21:26:55,447 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-18 21:26:58,566 epoch 4 - iter 198/1984 - loss 0.18075544 - time (sec): 3.12 - samples/sec: 5291.79 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-18 21:27:01,634 epoch 4 - iter 396/1984 - loss 0.18240152 - time (sec): 6.19 - samples/sec: 5143.93 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-18 21:27:04,650 epoch 4 - iter 594/1984 - loss 0.17441944 - time (sec): 9.20 - samples/sec: 5216.19 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-18 21:27:07,674 epoch 4 - iter 792/1984 - loss 0.17622746 - time (sec): 12.23 - samples/sec: 5214.64 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-18 21:27:10,762 epoch 4 - iter 990/1984 - loss 0.17870370 - time (sec): 15.31 - samples/sec: 5266.42 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-18 21:27:13,782 epoch 4 - iter 1188/1984 - loss 0.17730408 - time (sec): 18.33 - samples/sec: 5322.13 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-18 21:27:16,890 epoch 4 - iter 1386/1984 - loss 0.17390393 - time (sec): 21.44 - samples/sec: 5403.97 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-18 21:27:20,088 epoch 4 - iter 1584/1984 - loss 0.17431675 - time (sec): 24.64 - samples/sec: 5366.83 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-18 21:27:23,148 epoch 4 - iter 1782/1984 - loss 0.17801776 - time (sec): 27.70 - samples/sec: 5333.04 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-18 21:27:26,231 epoch 4 - iter 1980/1984 - loss 0.17957717 - time (sec): 30.78 - samples/sec: 5317.52 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-18 21:27:26,291 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-18 21:27:26,291 EPOCH 4 done: loss 0.1797 - lr: 0.000033
|
135 |
+
2023-10-18 21:27:28,115 DEV : loss 0.14466138184070587 - f1-score (micro avg) 0.5683
|
136 |
+
2023-10-18 21:27:28,133 saving best model
|
137 |
+
2023-10-18 21:27:28,167 ----------------------------------------------------------------------------------------------------
|
138 |
+
2023-10-18 21:27:31,281 epoch 5 - iter 198/1984 - loss 0.18093443 - time (sec): 3.11 - samples/sec: 5540.53 - lr: 0.000033 - momentum: 0.000000
|
139 |
+
2023-10-18 21:27:34,301 epoch 5 - iter 396/1984 - loss 0.17976008 - time (sec): 6.13 - samples/sec: 5491.12 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-18 21:27:37,345 epoch 5 - iter 594/1984 - loss 0.17027389 - time (sec): 9.18 - samples/sec: 5444.29 - lr: 0.000032 - momentum: 0.000000
|
141 |
+
2023-10-18 21:27:40,347 epoch 5 - iter 792/1984 - loss 0.16509799 - time (sec): 12.18 - samples/sec: 5422.24 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-18 21:27:43,351 epoch 5 - iter 990/1984 - loss 0.16344421 - time (sec): 15.18 - samples/sec: 5364.28 - lr: 0.000031 - momentum: 0.000000
|
143 |
+
2023-10-18 21:27:46,391 epoch 5 - iter 1188/1984 - loss 0.16463321 - time (sec): 18.22 - samples/sec: 5341.67 - lr: 0.000030 - momentum: 0.000000
|
144 |
+
2023-10-18 21:27:49,456 epoch 5 - iter 1386/1984 - loss 0.16486788 - time (sec): 21.29 - samples/sec: 5405.39 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-18 21:27:52,493 epoch 5 - iter 1584/1984 - loss 0.16396812 - time (sec): 24.33 - samples/sec: 5388.54 - lr: 0.000029 - momentum: 0.000000
|
146 |
+
2023-10-18 21:27:55,556 epoch 5 - iter 1782/1984 - loss 0.16439615 - time (sec): 27.39 - samples/sec: 5372.41 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-18 21:27:58,492 epoch 5 - iter 1980/1984 - loss 0.16305676 - time (sec): 30.32 - samples/sec: 5399.14 - lr: 0.000028 - momentum: 0.000000
|
148 |
+
2023-10-18 21:27:58,549 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-18 21:27:58,549 EPOCH 5 done: loss 0.1629 - lr: 0.000028
|
150 |
+
2023-10-18 21:28:00,391 DEV : loss 0.1396612972021103 - f1-score (micro avg) 0.6016
|
151 |
+
2023-10-18 21:28:00,410 saving best model
|
152 |
+
2023-10-18 21:28:00,443 ----------------------------------------------------------------------------------------------------
|
153 |
+
2023-10-18 21:28:03,439 epoch 6 - iter 198/1984 - loss 0.16107360 - time (sec): 3.00 - samples/sec: 5139.73 - lr: 0.000027 - momentum: 0.000000
|
154 |
+
2023-10-18 21:28:06,549 epoch 6 - iter 396/1984 - loss 0.15421664 - time (sec): 6.11 - samples/sec: 5364.46 - lr: 0.000027 - momentum: 0.000000
|
155 |
+
2023-10-18 21:28:09,674 epoch 6 - iter 594/1984 - loss 0.15915795 - time (sec): 9.23 - samples/sec: 5330.25 - lr: 0.000026 - momentum: 0.000000
|
156 |
+
2023-10-18 21:28:12,713 epoch 6 - iter 792/1984 - loss 0.15438849 - time (sec): 12.27 - samples/sec: 5364.46 - lr: 0.000026 - momentum: 0.000000
|
157 |
+
2023-10-18 21:28:15,664 epoch 6 - iter 990/1984 - loss 0.15292486 - time (sec): 15.22 - samples/sec: 5399.57 - lr: 0.000025 - momentum: 0.000000
|
158 |
+
2023-10-18 21:28:18,518 epoch 6 - iter 1188/1984 - loss 0.15391287 - time (sec): 18.07 - samples/sec: 5466.01 - lr: 0.000024 - momentum: 0.000000
|
159 |
+
2023-10-18 21:28:21,258 epoch 6 - iter 1386/1984 - loss 0.15391731 - time (sec): 20.81 - samples/sec: 5532.31 - lr: 0.000024 - momentum: 0.000000
|
160 |
+
2023-10-18 21:28:24,192 epoch 6 - iter 1584/1984 - loss 0.15364826 - time (sec): 23.75 - samples/sec: 5517.99 - lr: 0.000023 - momentum: 0.000000
|
161 |
+
2023-10-18 21:28:27,215 epoch 6 - iter 1782/1984 - loss 0.15355381 - time (sec): 26.77 - samples/sec: 5506.02 - lr: 0.000023 - momentum: 0.000000
|
162 |
+
2023-10-18 21:28:30,278 epoch 6 - iter 1980/1984 - loss 0.15357759 - time (sec): 29.84 - samples/sec: 5488.25 - lr: 0.000022 - momentum: 0.000000
|
163 |
+
2023-10-18 21:28:30,343 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-18 21:28:30,343 EPOCH 6 done: loss 0.1536 - lr: 0.000022
|
165 |
+
2023-10-18 21:28:32,160 DEV : loss 0.14352329075336456 - f1-score (micro avg) 0.6138
|
166 |
+
2023-10-18 21:28:32,179 saving best model
|
167 |
+
2023-10-18 21:28:32,213 ----------------------------------------------------------------------------------------------------
|
168 |
+
2023-10-18 21:28:35,313 epoch 7 - iter 198/1984 - loss 0.14010170 - time (sec): 3.10 - samples/sec: 5495.13 - lr: 0.000022 - momentum: 0.000000
|
169 |
+
2023-10-18 21:28:38,375 epoch 7 - iter 396/1984 - loss 0.14331514 - time (sec): 6.16 - samples/sec: 5523.70 - lr: 0.000021 - momentum: 0.000000
|
170 |
+
2023-10-18 21:28:41,433 epoch 7 - iter 594/1984 - loss 0.14376651 - time (sec): 9.22 - samples/sec: 5353.76 - lr: 0.000021 - momentum: 0.000000
|
171 |
+
2023-10-18 21:28:44,525 epoch 7 - iter 792/1984 - loss 0.14327862 - time (sec): 12.31 - samples/sec: 5209.88 - lr: 0.000020 - momentum: 0.000000
|
172 |
+
2023-10-18 21:28:47,677 epoch 7 - iter 990/1984 - loss 0.14545548 - time (sec): 15.46 - samples/sec: 5195.18 - lr: 0.000019 - momentum: 0.000000
|
173 |
+
2023-10-18 21:28:50,714 epoch 7 - iter 1188/1984 - loss 0.14341143 - time (sec): 18.50 - samples/sec: 5255.03 - lr: 0.000019 - momentum: 0.000000
|
174 |
+
2023-10-18 21:28:53,759 epoch 7 - iter 1386/1984 - loss 0.14255578 - time (sec): 21.54 - samples/sec: 5272.56 - lr: 0.000018 - momentum: 0.000000
|
175 |
+
2023-10-18 21:28:56,904 epoch 7 - iter 1584/1984 - loss 0.14220705 - time (sec): 24.69 - samples/sec: 5262.27 - lr: 0.000018 - momentum: 0.000000
|
176 |
+
2023-10-18 21:28:59,957 epoch 7 - iter 1782/1984 - loss 0.14227082 - time (sec): 27.74 - samples/sec: 5273.02 - lr: 0.000017 - momentum: 0.000000
|
177 |
+
2023-10-18 21:29:03,032 epoch 7 - iter 1980/1984 - loss 0.14322288 - time (sec): 30.82 - samples/sec: 5315.07 - lr: 0.000017 - momentum: 0.000000
|
178 |
+
2023-10-18 21:29:03,091 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-18 21:29:03,091 EPOCH 7 done: loss 0.1432 - lr: 0.000017
|
180 |
+
2023-10-18 21:29:04,914 DEV : loss 0.1460934579372406 - f1-score (micro avg) 0.6181
|
181 |
+
2023-10-18 21:29:04,933 saving best model
|
182 |
+
2023-10-18 21:29:04,967 ----------------------------------------------------------------------------------------------------
|
183 |
+
2023-10-18 21:29:07,991 epoch 8 - iter 198/1984 - loss 0.15508407 - time (sec): 3.02 - samples/sec: 5680.49 - lr: 0.000016 - momentum: 0.000000
|
184 |
+
2023-10-18 21:29:11,034 epoch 8 - iter 396/1984 - loss 0.14857609 - time (sec): 6.07 - samples/sec: 5447.32 - lr: 0.000016 - momentum: 0.000000
|
185 |
+
2023-10-18 21:29:14,053 epoch 8 - iter 594/1984 - loss 0.14831674 - time (sec): 9.09 - samples/sec: 5539.95 - lr: 0.000015 - momentum: 0.000000
|
186 |
+
2023-10-18 21:29:16,965 epoch 8 - iter 792/1984 - loss 0.14431698 - time (sec): 12.00 - samples/sec: 5580.93 - lr: 0.000014 - momentum: 0.000000
|
187 |
+
2023-10-18 21:29:19,967 epoch 8 - iter 990/1984 - loss 0.14072716 - time (sec): 15.00 - samples/sec: 5527.79 - lr: 0.000014 - momentum: 0.000000
|
188 |
+
2023-10-18 21:29:23,046 epoch 8 - iter 1188/1984 - loss 0.13730687 - time (sec): 18.08 - samples/sec: 5511.35 - lr: 0.000013 - momentum: 0.000000
|
189 |
+
2023-10-18 21:29:26,169 epoch 8 - iter 1386/1984 - loss 0.13802672 - time (sec): 21.20 - samples/sec: 5447.35 - lr: 0.000013 - momentum: 0.000000
|
190 |
+
2023-10-18 21:29:29,261 epoch 8 - iter 1584/1984 - loss 0.13646616 - time (sec): 24.29 - samples/sec: 5454.78 - lr: 0.000012 - momentum: 0.000000
|
191 |
+
2023-10-18 21:29:32,269 epoch 8 - iter 1782/1984 - loss 0.13626809 - time (sec): 27.30 - samples/sec: 5441.22 - lr: 0.000012 - momentum: 0.000000
|
192 |
+
2023-10-18 21:29:35,338 epoch 8 - iter 1980/1984 - loss 0.13563883 - time (sec): 30.37 - samples/sec: 5385.09 - lr: 0.000011 - momentum: 0.000000
|
193 |
+
2023-10-18 21:29:35,401 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-18 21:29:35,401 EPOCH 8 done: loss 0.1354 - lr: 0.000011
|
195 |
+
2023-10-18 21:29:37,660 DEV : loss 0.14632448554039001 - f1-score (micro avg) 0.6125
|
196 |
+
2023-10-18 21:29:37,681 ----------------------------------------------------------------------------------------------------
|
197 |
+
2023-10-18 21:29:40,791 epoch 9 - iter 198/1984 - loss 0.12436606 - time (sec): 3.11 - samples/sec: 4996.85 - lr: 0.000011 - momentum: 0.000000
|
198 |
+
2023-10-18 21:29:43,807 epoch 9 - iter 396/1984 - loss 0.12130140 - time (sec): 6.12 - samples/sec: 5243.22 - lr: 0.000010 - momentum: 0.000000
|
199 |
+
2023-10-18 21:29:46,923 epoch 9 - iter 594/1984 - loss 0.12036860 - time (sec): 9.24 - samples/sec: 5222.59 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-18 21:29:49,986 epoch 9 - iter 792/1984 - loss 0.12390287 - time (sec): 12.30 - samples/sec: 5269.18 - lr: 0.000009 - momentum: 0.000000
|
201 |
+
2023-10-18 21:29:52,890 epoch 9 - iter 990/1984 - loss 0.12172877 - time (sec): 15.21 - samples/sec: 5357.59 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-18 21:29:55,968 epoch 9 - iter 1188/1984 - loss 0.12359398 - time (sec): 18.29 - samples/sec: 5348.49 - lr: 0.000008 - momentum: 0.000000
|
203 |
+
2023-10-18 21:29:59,087 epoch 9 - iter 1386/1984 - loss 0.12601590 - time (sec): 21.41 - samples/sec: 5335.60 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-18 21:30:02,163 epoch 9 - iter 1584/1984 - loss 0.12731249 - time (sec): 24.48 - samples/sec: 5329.19 - lr: 0.000007 - momentum: 0.000000
|
205 |
+
2023-10-18 21:30:05,015 epoch 9 - iter 1782/1984 - loss 0.13000702 - time (sec): 27.33 - samples/sec: 5411.53 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-18 21:30:07,908 epoch 9 - iter 1980/1984 - loss 0.13026706 - time (sec): 30.23 - samples/sec: 5415.84 - lr: 0.000006 - momentum: 0.000000
|
207 |
+
2023-10-18 21:30:07,967 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-18 21:30:07,968 EPOCH 9 done: loss 0.1302 - lr: 0.000006
|
209 |
+
2023-10-18 21:30:09,795 DEV : loss 0.14653360843658447 - f1-score (micro avg) 0.6208
|
210 |
+
2023-10-18 21:30:09,816 saving best model
|
211 |
+
2023-10-18 21:30:09,851 ----------------------------------------------------------------------------------------------------
|
212 |
+
2023-10-18 21:30:13,178 epoch 10 - iter 198/1984 - loss 0.10287722 - time (sec): 3.33 - samples/sec: 4987.47 - lr: 0.000005 - momentum: 0.000000
|
213 |
+
2023-10-18 21:30:16,230 epoch 10 - iter 396/1984 - loss 0.11633178 - time (sec): 6.38 - samples/sec: 5153.20 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-18 21:30:19,312 epoch 10 - iter 594/1984 - loss 0.12476201 - time (sec): 9.46 - samples/sec: 5193.09 - lr: 0.000004 - momentum: 0.000000
|
215 |
+
2023-10-18 21:30:22,352 epoch 10 - iter 792/1984 - loss 0.12536802 - time (sec): 12.50 - samples/sec: 5209.88 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-18 21:30:25,421 epoch 10 - iter 990/1984 - loss 0.12695762 - time (sec): 15.57 - samples/sec: 5294.90 - lr: 0.000003 - momentum: 0.000000
|
217 |
+
2023-10-18 21:30:28,513 epoch 10 - iter 1188/1984 - loss 0.12707600 - time (sec): 18.66 - samples/sec: 5283.15 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-18 21:30:31,586 epoch 10 - iter 1386/1984 - loss 0.12684283 - time (sec): 21.73 - samples/sec: 5283.84 - lr: 0.000002 - momentum: 0.000000
|
219 |
+
2023-10-18 21:30:34,749 epoch 10 - iter 1584/1984 - loss 0.12638192 - time (sec): 24.90 - samples/sec: 5252.68 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-18 21:30:37,835 epoch 10 - iter 1782/1984 - loss 0.12660082 - time (sec): 27.98 - samples/sec: 5271.15 - lr: 0.000001 - momentum: 0.000000
|
221 |
+
2023-10-18 21:30:40,835 epoch 10 - iter 1980/1984 - loss 0.12678588 - time (sec): 30.98 - samples/sec: 5285.51 - lr: 0.000000 - momentum: 0.000000
|
222 |
+
2023-10-18 21:30:40,894 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-18 21:30:40,894 EPOCH 10 done: loss 0.1267 - lr: 0.000000
|
224 |
+
2023-10-18 21:30:42,746 DEV : loss 0.1484779566526413 - f1-score (micro avg) 0.6175
|
225 |
+
2023-10-18 21:30:42,793 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-10-18 21:30:42,793 Loading model from best epoch ...
|
227 |
+
2023-10-18 21:30:42,875 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
228 |
+
2023-10-18 21:30:44,397
|
229 |
+
Results:
|
230 |
+
- F-score (micro) 0.6425
|
231 |
+
- F-score (macro) 0.4918
|
232 |
+
- Accuracy 0.5084
|
233 |
+
|
234 |
+
By class:
|
235 |
+
precision recall f1-score support
|
236 |
+
|
237 |
+
LOC 0.7192 0.7664 0.7421 655
|
238 |
+
PER 0.4534 0.6547 0.5358 223
|
239 |
+
ORG 0.3778 0.1339 0.1977 127
|
240 |
+
|
241 |
+
micro avg 0.6244 0.6617 0.6425 1005
|
242 |
+
macro avg 0.5168 0.5183 0.4918 1005
|
243 |
+
weighted avg 0.6171 0.6617 0.6275 1005
|
244 |
+
|
245 |
+
2023-10-18 21:30:44,397 ----------------------------------------------------------------------------------------------------
|