stefan-it's picture
Upload folder using huggingface_hub
c055566
2023-10-19 19:36:24,482 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,482 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 128)
(position_embeddings): Embedding(512, 128)
(token_type_embeddings): Embedding(2, 128)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-1): 2 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=128, out_features=128, bias=True)
(key): Linear(in_features=128, out_features=128, bias=True)
(value): Linear(in_features=128, out_features=128, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=128, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=128, out_features=512, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=512, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=128, out_features=128, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=128, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-19 19:36:24,482 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,482 MultiCorpus: 7142 train + 698 dev + 2570 test sentences
- NER_HIPE_2022 Corpus: 7142 train + 698 dev + 2570 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fr/with_doc_seperator
2023-10-19 19:36:24,482 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,482 Train: 7142 sentences
2023-10-19 19:36:24,482 (train_with_dev=False, train_with_test=False)
2023-10-19 19:36:24,482 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,482 Training Params:
2023-10-19 19:36:24,482 - learning_rate: "5e-05"
2023-10-19 19:36:24,482 - mini_batch_size: "4"
2023-10-19 19:36:24,482 - max_epochs: "10"
2023-10-19 19:36:24,482 - shuffle: "True"
2023-10-19 19:36:24,482 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,482 Plugins:
2023-10-19 19:36:24,482 - TensorboardLogger
2023-10-19 19:36:24,483 - LinearScheduler | warmup_fraction: '0.1'
2023-10-19 19:36:24,483 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,483 Final evaluation on model from best epoch (best-model.pt)
2023-10-19 19:36:24,483 - metric: "('micro avg', 'f1-score')"
2023-10-19 19:36:24,483 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,483 Computation:
2023-10-19 19:36:24,483 - compute on device: cuda:0
2023-10-19 19:36:24,483 - embedding storage: none
2023-10-19 19:36:24,483 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,483 Model training base path: "hmbench-newseye/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-19 19:36:24,483 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,483 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:24,483 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-19 19:36:27,605 epoch 1 - iter 178/1786 - loss 3.27396970 - time (sec): 3.12 - samples/sec: 8577.89 - lr: 0.000005 - momentum: 0.000000
2023-10-19 19:36:30,669 epoch 1 - iter 356/1786 - loss 2.78021747 - time (sec): 6.19 - samples/sec: 8319.68 - lr: 0.000010 - momentum: 0.000000
2023-10-19 19:36:33,854 epoch 1 - iter 534/1786 - loss 2.20153535 - time (sec): 9.37 - samples/sec: 8225.33 - lr: 0.000015 - momentum: 0.000000
2023-10-19 19:36:36,825 epoch 1 - iter 712/1786 - loss 1.87990522 - time (sec): 12.34 - samples/sec: 8105.74 - lr: 0.000020 - momentum: 0.000000
2023-10-19 19:36:39,787 epoch 1 - iter 890/1786 - loss 1.65052606 - time (sec): 15.30 - samples/sec: 8162.50 - lr: 0.000025 - momentum: 0.000000
2023-10-19 19:36:42,845 epoch 1 - iter 1068/1786 - loss 1.48583748 - time (sec): 18.36 - samples/sec: 8135.08 - lr: 0.000030 - momentum: 0.000000
2023-10-19 19:36:45,942 epoch 1 - iter 1246/1786 - loss 1.35348330 - time (sec): 21.46 - samples/sec: 8120.55 - lr: 0.000035 - momentum: 0.000000
2023-10-19 19:36:48,993 epoch 1 - iter 1424/1786 - loss 1.25058687 - time (sec): 24.51 - samples/sec: 8187.36 - lr: 0.000040 - momentum: 0.000000
2023-10-19 19:36:52,056 epoch 1 - iter 1602/1786 - loss 1.16632694 - time (sec): 27.57 - samples/sec: 8211.05 - lr: 0.000045 - momentum: 0.000000
2023-10-19 19:36:55,021 epoch 1 - iter 1780/1786 - loss 1.10109838 - time (sec): 30.54 - samples/sec: 8128.81 - lr: 0.000050 - momentum: 0.000000
2023-10-19 19:36:55,111 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:55,111 EPOCH 1 done: loss 1.1002 - lr: 0.000050
2023-10-19 19:36:56,586 DEV : loss 0.2988516390323639 - f1-score (micro avg) 0.2148
2023-10-19 19:36:56,601 saving best model
2023-10-19 19:36:56,632 ----------------------------------------------------------------------------------------------------
2023-10-19 19:36:59,872 epoch 2 - iter 178/1786 - loss 0.45233865 - time (sec): 3.24 - samples/sec: 7524.97 - lr: 0.000049 - momentum: 0.000000
2023-10-19 19:37:02,958 epoch 2 - iter 356/1786 - loss 0.41531477 - time (sec): 6.33 - samples/sec: 7897.94 - lr: 0.000049 - momentum: 0.000000
2023-10-19 19:37:06,164 epoch 2 - iter 534/1786 - loss 0.42140018 - time (sec): 9.53 - samples/sec: 7904.32 - lr: 0.000048 - momentum: 0.000000
2023-10-19 19:37:09,284 epoch 2 - iter 712/1786 - loss 0.41082544 - time (sec): 12.65 - samples/sec: 7981.69 - lr: 0.000048 - momentum: 0.000000
2023-10-19 19:37:12,285 epoch 2 - iter 890/1786 - loss 0.40282999 - time (sec): 15.65 - samples/sec: 7882.50 - lr: 0.000047 - momentum: 0.000000
2023-10-19 19:37:15,326 epoch 2 - iter 1068/1786 - loss 0.39333372 - time (sec): 18.69 - samples/sec: 7950.62 - lr: 0.000047 - momentum: 0.000000
2023-10-19 19:37:18,468 epoch 2 - iter 1246/1786 - loss 0.39031933 - time (sec): 21.84 - samples/sec: 7946.19 - lr: 0.000046 - momentum: 0.000000
2023-10-19 19:37:21,578 epoch 2 - iter 1424/1786 - loss 0.39082695 - time (sec): 24.95 - samples/sec: 8003.47 - lr: 0.000046 - momentum: 0.000000
2023-10-19 19:37:24,609 epoch 2 - iter 1602/1786 - loss 0.38591567 - time (sec): 27.98 - samples/sec: 7988.62 - lr: 0.000045 - momentum: 0.000000
2023-10-19 19:37:27,778 epoch 2 - iter 1780/1786 - loss 0.38165514 - time (sec): 31.15 - samples/sec: 7964.48 - lr: 0.000044 - momentum: 0.000000
2023-10-19 19:37:27,871 ----------------------------------------------------------------------------------------------------
2023-10-19 19:37:27,871 EPOCH 2 done: loss 0.3817 - lr: 0.000044
2023-10-19 19:37:30,634 DEV : loss 0.2359563112258911 - f1-score (micro avg) 0.4146
2023-10-19 19:37:30,648 saving best model
2023-10-19 19:37:30,680 ----------------------------------------------------------------------------------------------------
2023-10-19 19:37:33,740 epoch 3 - iter 178/1786 - loss 0.29124349 - time (sec): 3.06 - samples/sec: 7695.75 - lr: 0.000044 - momentum: 0.000000
2023-10-19 19:37:36,723 epoch 3 - iter 356/1786 - loss 0.30538165 - time (sec): 6.04 - samples/sec: 7877.90 - lr: 0.000043 - momentum: 0.000000
2023-10-19 19:37:39,776 epoch 3 - iter 534/1786 - loss 0.31807769 - time (sec): 9.09 - samples/sec: 7900.96 - lr: 0.000043 - momentum: 0.000000
2023-10-19 19:37:42,785 epoch 3 - iter 712/1786 - loss 0.31141018 - time (sec): 12.10 - samples/sec: 7965.42 - lr: 0.000042 - momentum: 0.000000
2023-10-19 19:37:45,725 epoch 3 - iter 890/1786 - loss 0.31100537 - time (sec): 15.04 - samples/sec: 8024.61 - lr: 0.000042 - momentum: 0.000000
2023-10-19 19:37:48,854 epoch 3 - iter 1068/1786 - loss 0.30996002 - time (sec): 18.17 - samples/sec: 8102.43 - lr: 0.000041 - momentum: 0.000000
2023-10-19 19:37:51,863 epoch 3 - iter 1246/1786 - loss 0.30713704 - time (sec): 21.18 - samples/sec: 8081.12 - lr: 0.000041 - momentum: 0.000000
2023-10-19 19:37:55,026 epoch 3 - iter 1424/1786 - loss 0.30756342 - time (sec): 24.35 - samples/sec: 8084.50 - lr: 0.000040 - momentum: 0.000000
2023-10-19 19:37:58,152 epoch 3 - iter 1602/1786 - loss 0.30206285 - time (sec): 27.47 - samples/sec: 8134.80 - lr: 0.000039 - momentum: 0.000000
2023-10-19 19:38:01,178 epoch 3 - iter 1780/1786 - loss 0.30084992 - time (sec): 30.50 - samples/sec: 8129.64 - lr: 0.000039 - momentum: 0.000000
2023-10-19 19:38:01,277 ----------------------------------------------------------------------------------------------------
2023-10-19 19:38:01,277 EPOCH 3 done: loss 0.3013 - lr: 0.000039
2023-10-19 19:38:03,640 DEV : loss 0.21294961869716644 - f1-score (micro avg) 0.4955
2023-10-19 19:38:03,654 saving best model
2023-10-19 19:38:03,687 ----------------------------------------------------------------------------------------------------
2023-10-19 19:38:06,205 epoch 4 - iter 178/1786 - loss 0.28951262 - time (sec): 2.52 - samples/sec: 9326.20 - lr: 0.000038 - momentum: 0.000000
2023-10-19 19:38:08,836 epoch 4 - iter 356/1786 - loss 0.27653901 - time (sec): 5.15 - samples/sec: 9375.61 - lr: 0.000038 - momentum: 0.000000
2023-10-19 19:38:11,931 epoch 4 - iter 534/1786 - loss 0.27776588 - time (sec): 8.24 - samples/sec: 9028.31 - lr: 0.000037 - momentum: 0.000000
2023-10-19 19:38:14,936 epoch 4 - iter 712/1786 - loss 0.27643033 - time (sec): 11.25 - samples/sec: 8604.89 - lr: 0.000037 - momentum: 0.000000
2023-10-19 19:38:17,926 epoch 4 - iter 890/1786 - loss 0.27157129 - time (sec): 14.24 - samples/sec: 8501.64 - lr: 0.000036 - momentum: 0.000000
2023-10-19 19:38:20,907 epoch 4 - iter 1068/1786 - loss 0.27366911 - time (sec): 17.22 - samples/sec: 8487.46 - lr: 0.000036 - momentum: 0.000000
2023-10-19 19:38:23,995 epoch 4 - iter 1246/1786 - loss 0.26878768 - time (sec): 20.31 - samples/sec: 8465.61 - lr: 0.000035 - momentum: 0.000000
2023-10-19 19:38:27,060 epoch 4 - iter 1424/1786 - loss 0.26860832 - time (sec): 23.37 - samples/sec: 8435.48 - lr: 0.000034 - momentum: 0.000000
2023-10-19 19:38:30,106 epoch 4 - iter 1602/1786 - loss 0.26521033 - time (sec): 26.42 - samples/sec: 8428.78 - lr: 0.000034 - momentum: 0.000000
2023-10-19 19:38:33,181 epoch 4 - iter 1780/1786 - loss 0.26377235 - time (sec): 29.49 - samples/sec: 8412.91 - lr: 0.000033 - momentum: 0.000000
2023-10-19 19:38:33,280 ----------------------------------------------------------------------------------------------------
2023-10-19 19:38:33,280 EPOCH 4 done: loss 0.2639 - lr: 0.000033
2023-10-19 19:38:36,104 DEV : loss 0.1954185664653778 - f1-score (micro avg) 0.5386
2023-10-19 19:38:36,118 saving best model
2023-10-19 19:38:36,150 ----------------------------------------------------------------------------------------------------
2023-10-19 19:38:39,326 epoch 5 - iter 178/1786 - loss 0.22782338 - time (sec): 3.17 - samples/sec: 8017.78 - lr: 0.000033 - momentum: 0.000000
2023-10-19 19:38:42,405 epoch 5 - iter 356/1786 - loss 0.24493235 - time (sec): 6.25 - samples/sec: 8072.13 - lr: 0.000032 - momentum: 0.000000
2023-10-19 19:38:45,548 epoch 5 - iter 534/1786 - loss 0.24576962 - time (sec): 9.40 - samples/sec: 8134.03 - lr: 0.000032 - momentum: 0.000000
2023-10-19 19:38:48,433 epoch 5 - iter 712/1786 - loss 0.25073368 - time (sec): 12.28 - samples/sec: 8034.20 - lr: 0.000031 - momentum: 0.000000
2023-10-19 19:38:51,659 epoch 5 - iter 890/1786 - loss 0.24792561 - time (sec): 15.51 - samples/sec: 7972.54 - lr: 0.000031 - momentum: 0.000000
2023-10-19 19:38:54,683 epoch 5 - iter 1068/1786 - loss 0.24376175 - time (sec): 18.53 - samples/sec: 8021.19 - lr: 0.000030 - momentum: 0.000000
2023-10-19 19:38:57,803 epoch 5 - iter 1246/1786 - loss 0.24271881 - time (sec): 21.65 - samples/sec: 8010.20 - lr: 0.000029 - momentum: 0.000000
2023-10-19 19:39:00,899 epoch 5 - iter 1424/1786 - loss 0.23911368 - time (sec): 24.75 - samples/sec: 8072.76 - lr: 0.000029 - momentum: 0.000000
2023-10-19 19:39:03,941 epoch 5 - iter 1602/1786 - loss 0.23851321 - time (sec): 27.79 - samples/sec: 8075.32 - lr: 0.000028 - momentum: 0.000000
2023-10-19 19:39:07,099 epoch 5 - iter 1780/1786 - loss 0.23554334 - time (sec): 30.95 - samples/sec: 8021.42 - lr: 0.000028 - momentum: 0.000000
2023-10-19 19:39:07,184 ----------------------------------------------------------------------------------------------------
2023-10-19 19:39:07,184 EPOCH 5 done: loss 0.2359 - lr: 0.000028
2023-10-19 19:39:09,528 DEV : loss 0.19769060611724854 - f1-score (micro avg) 0.5429
2023-10-19 19:39:09,544 saving best model
2023-10-19 19:39:09,578 ----------------------------------------------------------------------------------------------------
2023-10-19 19:39:12,652 epoch 6 - iter 178/1786 - loss 0.22045055 - time (sec): 3.07 - samples/sec: 8026.99 - lr: 0.000027 - momentum: 0.000000
2023-10-19 19:39:15,743 epoch 6 - iter 356/1786 - loss 0.21078132 - time (sec): 6.16 - samples/sec: 8203.99 - lr: 0.000027 - momentum: 0.000000
2023-10-19 19:39:18,777 epoch 6 - iter 534/1786 - loss 0.21210754 - time (sec): 9.20 - samples/sec: 8270.68 - lr: 0.000026 - momentum: 0.000000
2023-10-19 19:39:21,787 epoch 6 - iter 712/1786 - loss 0.21530597 - time (sec): 12.21 - samples/sec: 8235.79 - lr: 0.000026 - momentum: 0.000000
2023-10-19 19:39:24,845 epoch 6 - iter 890/1786 - loss 0.21713503 - time (sec): 15.27 - samples/sec: 8286.95 - lr: 0.000025 - momentum: 0.000000
2023-10-19 19:39:27,887 epoch 6 - iter 1068/1786 - loss 0.21502049 - time (sec): 18.31 - samples/sec: 8238.44 - lr: 0.000024 - momentum: 0.000000
2023-10-19 19:39:30,932 epoch 6 - iter 1246/1786 - loss 0.21781126 - time (sec): 21.35 - samples/sec: 8159.07 - lr: 0.000024 - momentum: 0.000000
2023-10-19 19:39:33,995 epoch 6 - iter 1424/1786 - loss 0.21736778 - time (sec): 24.42 - samples/sec: 8139.12 - lr: 0.000023 - momentum: 0.000000
2023-10-19 19:39:36,992 epoch 6 - iter 1602/1786 - loss 0.21517526 - time (sec): 27.41 - samples/sec: 8142.54 - lr: 0.000023 - momentum: 0.000000
2023-10-19 19:39:40,261 epoch 6 - iter 1780/1786 - loss 0.21641064 - time (sec): 30.68 - samples/sec: 8090.65 - lr: 0.000022 - momentum: 0.000000
2023-10-19 19:39:40,351 ----------------------------------------------------------------------------------------------------
2023-10-19 19:39:40,351 EPOCH 6 done: loss 0.2166 - lr: 0.000022
2023-10-19 19:39:43,159 DEV : loss 0.19191302359104156 - f1-score (micro avg) 0.5607
2023-10-19 19:39:43,174 saving best model
2023-10-19 19:39:43,211 ----------------------------------------------------------------------------------------------------
2023-10-19 19:39:46,173 epoch 7 - iter 178/1786 - loss 0.20637887 - time (sec): 2.96 - samples/sec: 7808.24 - lr: 0.000022 - momentum: 0.000000
2023-10-19 19:39:49,227 epoch 7 - iter 356/1786 - loss 0.20872566 - time (sec): 6.02 - samples/sec: 7998.94 - lr: 0.000021 - momentum: 0.000000
2023-10-19 19:39:52,303 epoch 7 - iter 534/1786 - loss 0.20004438 - time (sec): 9.09 - samples/sec: 8075.75 - lr: 0.000021 - momentum: 0.000000
2023-10-19 19:39:55,213 epoch 7 - iter 712/1786 - loss 0.20338323 - time (sec): 12.00 - samples/sec: 8150.91 - lr: 0.000020 - momentum: 0.000000
2023-10-19 19:39:58,054 epoch 7 - iter 890/1786 - loss 0.20370059 - time (sec): 14.84 - samples/sec: 8295.45 - lr: 0.000019 - momentum: 0.000000
2023-10-19 19:40:01,168 epoch 7 - iter 1068/1786 - loss 0.19908535 - time (sec): 17.96 - samples/sec: 8292.89 - lr: 0.000019 - momentum: 0.000000
2023-10-19 19:40:04,243 epoch 7 - iter 1246/1786 - loss 0.20158080 - time (sec): 21.03 - samples/sec: 8271.76 - lr: 0.000018 - momentum: 0.000000
2023-10-19 19:40:07,312 epoch 7 - iter 1424/1786 - loss 0.20291764 - time (sec): 24.10 - samples/sec: 8212.95 - lr: 0.000018 - momentum: 0.000000
2023-10-19 19:40:10,437 epoch 7 - iter 1602/1786 - loss 0.20298768 - time (sec): 27.22 - samples/sec: 8170.91 - lr: 0.000017 - momentum: 0.000000
2023-10-19 19:40:13,465 epoch 7 - iter 1780/1786 - loss 0.20413992 - time (sec): 30.25 - samples/sec: 8202.27 - lr: 0.000017 - momentum: 0.000000
2023-10-19 19:40:13,563 ----------------------------------------------------------------------------------------------------
2023-10-19 19:40:13,563 EPOCH 7 done: loss 0.2037 - lr: 0.000017
2023-10-19 19:40:15,934 DEV : loss 0.19076649844646454 - f1-score (micro avg) 0.5546
2023-10-19 19:40:15,948 ----------------------------------------------------------------------------------------------------
2023-10-19 19:40:19,099 epoch 8 - iter 178/1786 - loss 0.20287556 - time (sec): 3.15 - samples/sec: 8037.68 - lr: 0.000016 - momentum: 0.000000
2023-10-19 19:40:22,162 epoch 8 - iter 356/1786 - loss 0.20229720 - time (sec): 6.21 - samples/sec: 8081.69 - lr: 0.000016 - momentum: 0.000000
2023-10-19 19:40:25,163 epoch 8 - iter 534/1786 - loss 0.19898193 - time (sec): 9.21 - samples/sec: 7978.92 - lr: 0.000015 - momentum: 0.000000
2023-10-19 19:40:28,253 epoch 8 - iter 712/1786 - loss 0.19369768 - time (sec): 12.30 - samples/sec: 8044.90 - lr: 0.000014 - momentum: 0.000000
2023-10-19 19:40:31,293 epoch 8 - iter 890/1786 - loss 0.19392117 - time (sec): 15.34 - samples/sec: 8021.72 - lr: 0.000014 - momentum: 0.000000
2023-10-19 19:40:34,380 epoch 8 - iter 1068/1786 - loss 0.19084573 - time (sec): 18.43 - samples/sec: 8149.87 - lr: 0.000013 - momentum: 0.000000
2023-10-19 19:40:37,408 epoch 8 - iter 1246/1786 - loss 0.19257386 - time (sec): 21.46 - samples/sec: 8073.89 - lr: 0.000013 - momentum: 0.000000
2023-10-19 19:40:40,545 epoch 8 - iter 1424/1786 - loss 0.19073891 - time (sec): 24.60 - samples/sec: 8070.27 - lr: 0.000012 - momentum: 0.000000
2023-10-19 19:40:43,699 epoch 8 - iter 1602/1786 - loss 0.19251240 - time (sec): 27.75 - samples/sec: 8085.32 - lr: 0.000012 - momentum: 0.000000
2023-10-19 19:40:46,825 epoch 8 - iter 1780/1786 - loss 0.19379490 - time (sec): 30.88 - samples/sec: 8023.17 - lr: 0.000011 - momentum: 0.000000
2023-10-19 19:40:46,927 ----------------------------------------------------------------------------------------------------
2023-10-19 19:40:46,927 EPOCH 8 done: loss 0.1933 - lr: 0.000011
2023-10-19 19:40:49,730 DEV : loss 0.19240671396255493 - f1-score (micro avg) 0.5782
2023-10-19 19:40:49,743 saving best model
2023-10-19 19:40:49,776 ----------------------------------------------------------------------------------------------------
2023-10-19 19:40:52,886 epoch 9 - iter 178/1786 - loss 0.18684976 - time (sec): 3.11 - samples/sec: 7832.90 - lr: 0.000011 - momentum: 0.000000
2023-10-19 19:40:55,903 epoch 9 - iter 356/1786 - loss 0.19878074 - time (sec): 6.13 - samples/sec: 7964.77 - lr: 0.000010 - momentum: 0.000000
2023-10-19 19:40:58,822 epoch 9 - iter 534/1786 - loss 0.18798472 - time (sec): 9.04 - samples/sec: 8049.85 - lr: 0.000009 - momentum: 0.000000
2023-10-19 19:41:01,517 epoch 9 - iter 712/1786 - loss 0.18858620 - time (sec): 11.74 - samples/sec: 8388.76 - lr: 0.000009 - momentum: 0.000000
2023-10-19 19:41:04,448 epoch 9 - iter 890/1786 - loss 0.18757950 - time (sec): 14.67 - samples/sec: 8347.49 - lr: 0.000008 - momentum: 0.000000
2023-10-19 19:41:07,616 epoch 9 - iter 1068/1786 - loss 0.18804694 - time (sec): 17.84 - samples/sec: 8332.91 - lr: 0.000008 - momentum: 0.000000
2023-10-19 19:41:10,612 epoch 9 - iter 1246/1786 - loss 0.18839630 - time (sec): 20.83 - samples/sec: 8262.66 - lr: 0.000007 - momentum: 0.000000
2023-10-19 19:41:13,620 epoch 9 - iter 1424/1786 - loss 0.18752199 - time (sec): 23.84 - samples/sec: 8305.41 - lr: 0.000007 - momentum: 0.000000
2023-10-19 19:41:16,675 epoch 9 - iter 1602/1786 - loss 0.18922005 - time (sec): 26.90 - samples/sec: 8279.74 - lr: 0.000006 - momentum: 0.000000
2023-10-19 19:41:19,763 epoch 9 - iter 1780/1786 - loss 0.18631733 - time (sec): 29.99 - samples/sec: 8266.86 - lr: 0.000006 - momentum: 0.000000
2023-10-19 19:41:19,855 ----------------------------------------------------------------------------------------------------
2023-10-19 19:41:19,856 EPOCH 9 done: loss 0.1861 - lr: 0.000006
2023-10-19 19:41:22,241 DEV : loss 0.19148223102092743 - f1-score (micro avg) 0.5702
2023-10-19 19:41:22,255 ----------------------------------------------------------------------------------------------------
2023-10-19 19:41:25,303 epoch 10 - iter 178/1786 - loss 0.19431345 - time (sec): 3.05 - samples/sec: 8189.90 - lr: 0.000005 - momentum: 0.000000
2023-10-19 19:41:28,461 epoch 10 - iter 356/1786 - loss 0.18949315 - time (sec): 6.21 - samples/sec: 8109.99 - lr: 0.000004 - momentum: 0.000000
2023-10-19 19:41:31,510 epoch 10 - iter 534/1786 - loss 0.18810189 - time (sec): 9.25 - samples/sec: 8210.97 - lr: 0.000004 - momentum: 0.000000
2023-10-19 19:41:34,529 epoch 10 - iter 712/1786 - loss 0.18254160 - time (sec): 12.27 - samples/sec: 8095.09 - lr: 0.000003 - momentum: 0.000000
2023-10-19 19:41:37,560 epoch 10 - iter 890/1786 - loss 0.18671388 - time (sec): 15.30 - samples/sec: 8049.64 - lr: 0.000003 - momentum: 0.000000
2023-10-19 19:41:40,612 epoch 10 - iter 1068/1786 - loss 0.18696598 - time (sec): 18.36 - samples/sec: 8059.17 - lr: 0.000002 - momentum: 0.000000
2023-10-19 19:41:43,694 epoch 10 - iter 1246/1786 - loss 0.18673026 - time (sec): 21.44 - samples/sec: 8064.43 - lr: 0.000002 - momentum: 0.000000
2023-10-19 19:41:46,697 epoch 10 - iter 1424/1786 - loss 0.18361987 - time (sec): 24.44 - samples/sec: 8108.91 - lr: 0.000001 - momentum: 0.000000
2023-10-19 19:41:49,821 epoch 10 - iter 1602/1786 - loss 0.18247854 - time (sec): 27.57 - samples/sec: 8062.99 - lr: 0.000001 - momentum: 0.000000
2023-10-19 19:41:52,926 epoch 10 - iter 1780/1786 - loss 0.18118154 - time (sec): 30.67 - samples/sec: 8093.04 - lr: 0.000000 - momentum: 0.000000
2023-10-19 19:41:53,020 ----------------------------------------------------------------------------------------------------
2023-10-19 19:41:53,020 EPOCH 10 done: loss 0.1813 - lr: 0.000000
2023-10-19 19:41:55,835 DEV : loss 0.19351665675640106 - f1-score (micro avg) 0.5679
2023-10-19 19:41:55,877 ----------------------------------------------------------------------------------------------------
2023-10-19 19:41:55,877 Loading model from best epoch ...
2023-10-19 19:41:55,952 SequenceTagger predicts: Dictionary with 17 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-19 19:42:00,540
Results:
- F-score (micro) 0.457
- F-score (macro) 0.297
- Accuracy 0.3051
By class:
precision recall f1-score support
LOC 0.4775 0.5333 0.5039 1095
PER 0.4620 0.5227 0.4905 1012
ORG 0.2234 0.1709 0.1937 357
HumanProd 0.0000 0.0000 0.0000 33
micro avg 0.4445 0.4702 0.4570 2497
macro avg 0.2907 0.3067 0.2970 2497
weighted avg 0.4286 0.4702 0.4474 2497
2023-10-19 19:42:00,540 ----------------------------------------------------------------------------------------------------