Upload ./training.log with huggingface_hub
Browse files- training.log +506 -0
training.log
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-25 08:00:15,628 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-25 08:00:15,629 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-25 08:00:15,630 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
317 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-25 08:00:15,630 Train: 14465 sentences
|
319 |
+
2023-10-25 08:00:15,630 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-25 08:00:15,630 Training Params:
|
322 |
+
2023-10-25 08:00:15,630 - learning_rate: "3e-05"
|
323 |
+
2023-10-25 08:00:15,630 - mini_batch_size: "8"
|
324 |
+
2023-10-25 08:00:15,630 - max_epochs: "10"
|
325 |
+
2023-10-25 08:00:15,630 - shuffle: "True"
|
326 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-25 08:00:15,630 Plugins:
|
328 |
+
2023-10-25 08:00:15,630 - TensorboardLogger
|
329 |
+
2023-10-25 08:00:15,630 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-25 08:00:15,630 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-25 08:00:15,630 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-25 08:00:15,630 Computation:
|
335 |
+
2023-10-25 08:00:15,630 - compute on device: cuda:0
|
336 |
+
2023-10-25 08:00:15,630 - embedding storage: none
|
337 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-25 08:00:15,630 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
|
339 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-25 08:00:15,630 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-25 08:00:31,579 epoch 1 - iter 180/1809 - loss 1.59994791 - time (sec): 15.95 - samples/sec: 2365.16 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-25 08:00:46,626 epoch 1 - iter 360/1809 - loss 0.90942152 - time (sec): 31.00 - samples/sec: 2420.21 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-25 08:01:02,121 epoch 1 - iter 540/1809 - loss 0.65057194 - time (sec): 46.49 - samples/sec: 2437.06 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-25 08:01:17,548 epoch 1 - iter 720/1809 - loss 0.52234297 - time (sec): 61.92 - samples/sec: 2445.01 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-25 08:01:32,921 epoch 1 - iter 900/1809 - loss 0.44356097 - time (sec): 77.29 - samples/sec: 2440.72 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-25 08:01:48,608 epoch 1 - iter 1080/1809 - loss 0.38806485 - time (sec): 92.98 - samples/sec: 2438.35 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-25 08:02:04,004 epoch 1 - iter 1260/1809 - loss 0.34665146 - time (sec): 108.37 - samples/sec: 2444.01 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-25 08:02:19,487 epoch 1 - iter 1440/1809 - loss 0.31692748 - time (sec): 123.86 - samples/sec: 2440.98 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-25 08:02:35,196 epoch 1 - iter 1620/1809 - loss 0.29267973 - time (sec): 139.57 - samples/sec: 2437.07 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-25 08:02:50,837 epoch 1 - iter 1800/1809 - loss 0.27406237 - time (sec): 155.21 - samples/sec: 2436.52 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-25 08:02:51,583 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-25 08:02:51,583 EPOCH 1 done: loss 0.2733 - lr: 0.000030
|
354 |
+
2023-10-25 08:02:56,022 DEV : loss 0.11878068745136261 - f1-score (micro avg) 0.6243
|
355 |
+
2023-10-25 08:02:56,043 saving best model
|
356 |
+
2023-10-25 08:02:56,600 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-25 08:03:12,137 epoch 2 - iter 180/1809 - loss 0.08520146 - time (sec): 15.54 - samples/sec: 2457.95 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-25 08:03:28,446 epoch 2 - iter 360/1809 - loss 0.09154462 - time (sec): 31.84 - samples/sec: 2418.86 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-25 08:03:44,444 epoch 2 - iter 540/1809 - loss 0.09248862 - time (sec): 47.84 - samples/sec: 2412.53 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-25 08:04:00,307 epoch 2 - iter 720/1809 - loss 0.08973269 - time (sec): 63.71 - samples/sec: 2404.62 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-25 08:04:16,033 epoch 2 - iter 900/1809 - loss 0.08876132 - time (sec): 79.43 - samples/sec: 2403.58 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-25 08:04:31,870 epoch 2 - iter 1080/1809 - loss 0.08756439 - time (sec): 95.27 - samples/sec: 2394.03 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-25 08:04:47,396 epoch 2 - iter 1260/1809 - loss 0.08711257 - time (sec): 110.79 - samples/sec: 2393.13 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-25 08:05:03,398 epoch 2 - iter 1440/1809 - loss 0.08478479 - time (sec): 126.80 - samples/sec: 2393.23 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-25 08:05:19,435 epoch 2 - iter 1620/1809 - loss 0.08360993 - time (sec): 142.83 - samples/sec: 2388.17 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-25 08:05:34,900 epoch 2 - iter 1800/1809 - loss 0.08306504 - time (sec): 158.30 - samples/sec: 2388.83 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-25 08:05:35,628 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-25 08:05:35,629 EPOCH 2 done: loss 0.0831 - lr: 0.000027
|
369 |
+
2023-10-25 08:05:40,837 DEV : loss 0.13267631828784943 - f1-score (micro avg) 0.6358
|
370 |
+
2023-10-25 08:05:40,859 saving best model
|
371 |
+
2023-10-25 08:05:41,675 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-25 08:05:57,585 epoch 3 - iter 180/1809 - loss 0.06089348 - time (sec): 15.91 - samples/sec: 2355.16 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-25 08:06:13,768 epoch 3 - iter 360/1809 - loss 0.06038894 - time (sec): 32.09 - samples/sec: 2360.88 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-25 08:06:29,084 epoch 3 - iter 540/1809 - loss 0.05526036 - time (sec): 47.41 - samples/sec: 2389.71 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-25 08:06:44,661 epoch 3 - iter 720/1809 - loss 0.05749612 - time (sec): 62.98 - samples/sec: 2390.73 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-25 08:07:00,404 epoch 3 - iter 900/1809 - loss 0.05617974 - time (sec): 78.73 - samples/sec: 2403.04 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-25 08:07:16,708 epoch 3 - iter 1080/1809 - loss 0.05706057 - time (sec): 95.03 - samples/sec: 2404.56 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-25 08:07:32,106 epoch 3 - iter 1260/1809 - loss 0.05724190 - time (sec): 110.43 - samples/sec: 2401.49 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-25 08:07:48,254 epoch 3 - iter 1440/1809 - loss 0.05718478 - time (sec): 126.58 - samples/sec: 2408.93 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-25 08:08:04,408 epoch 3 - iter 1620/1809 - loss 0.05826610 - time (sec): 142.73 - samples/sec: 2395.50 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-25 08:08:19,957 epoch 3 - iter 1800/1809 - loss 0.05919743 - time (sec): 158.28 - samples/sec: 2391.38 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-25 08:08:20,676 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-25 08:08:20,676 EPOCH 3 done: loss 0.0592 - lr: 0.000023
|
384 |
+
2023-10-25 08:08:25,440 DEV : loss 0.1354532539844513 - f1-score (micro avg) 0.6314
|
385 |
+
2023-10-25 08:08:25,462 ----------------------------------------------------------------------------------------------------
|
386 |
+
2023-10-25 08:08:41,845 epoch 4 - iter 180/1809 - loss 0.03568652 - time (sec): 16.38 - samples/sec: 2312.63 - lr: 0.000023 - momentum: 0.000000
|
387 |
+
2023-10-25 08:08:58,273 epoch 4 - iter 360/1809 - loss 0.03716226 - time (sec): 32.81 - samples/sec: 2346.64 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-25 08:09:13,745 epoch 4 - iter 540/1809 - loss 0.03968774 - time (sec): 48.28 - samples/sec: 2347.42 - lr: 0.000022 - momentum: 0.000000
|
389 |
+
2023-10-25 08:09:29,537 epoch 4 - iter 720/1809 - loss 0.04000489 - time (sec): 64.07 - samples/sec: 2355.52 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-25 08:09:45,388 epoch 4 - iter 900/1809 - loss 0.03962584 - time (sec): 79.93 - samples/sec: 2362.15 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-25 08:10:01,321 epoch 4 - iter 1080/1809 - loss 0.03940596 - time (sec): 95.86 - samples/sec: 2371.85 - lr: 0.000021 - momentum: 0.000000
|
392 |
+
2023-10-25 08:10:17,098 epoch 4 - iter 1260/1809 - loss 0.04055800 - time (sec): 111.64 - samples/sec: 2371.02 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-25 08:10:32,621 epoch 4 - iter 1440/1809 - loss 0.04022573 - time (sec): 127.16 - samples/sec: 2373.19 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-25 08:10:48,660 epoch 4 - iter 1620/1809 - loss 0.04065113 - time (sec): 143.20 - samples/sec: 2370.71 - lr: 0.000020 - momentum: 0.000000
|
395 |
+
2023-10-25 08:11:04,972 epoch 4 - iter 1800/1809 - loss 0.04133841 - time (sec): 159.51 - samples/sec: 2370.42 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-25 08:11:05,824 ----------------------------------------------------------------------------------------------------
|
397 |
+
2023-10-25 08:11:05,824 EPOCH 4 done: loss 0.0414 - lr: 0.000020
|
398 |
+
2023-10-25 08:11:10,594 DEV : loss 0.2289542257785797 - f1-score (micro avg) 0.6386
|
399 |
+
2023-10-25 08:11:10,616 saving best model
|
400 |
+
2023-10-25 08:11:11,305 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-25 08:11:26,893 epoch 5 - iter 180/1809 - loss 0.02492765 - time (sec): 15.59 - samples/sec: 2342.07 - lr: 0.000020 - momentum: 0.000000
|
402 |
+
2023-10-25 08:11:42,990 epoch 5 - iter 360/1809 - loss 0.02595936 - time (sec): 31.68 - samples/sec: 2334.66 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-25 08:11:58,875 epoch 5 - iter 540/1809 - loss 0.02591071 - time (sec): 47.57 - samples/sec: 2350.63 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-25 08:12:14,762 epoch 5 - iter 720/1809 - loss 0.02549117 - time (sec): 63.46 - samples/sec: 2358.16 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-25 08:12:30,706 epoch 5 - iter 900/1809 - loss 0.02448476 - time (sec): 79.40 - samples/sec: 2376.53 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-25 08:12:46,502 epoch 5 - iter 1080/1809 - loss 0.02533076 - time (sec): 95.20 - samples/sec: 2368.81 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-25 08:13:02,210 epoch 5 - iter 1260/1809 - loss 0.02562868 - time (sec): 110.90 - samples/sec: 2367.94 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-25 08:13:18,742 epoch 5 - iter 1440/1809 - loss 0.02590139 - time (sec): 127.44 - samples/sec: 2370.63 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-25 08:13:34,484 epoch 5 - iter 1620/1809 - loss 0.02625493 - time (sec): 143.18 - samples/sec: 2370.26 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-25 08:13:50,871 epoch 5 - iter 1800/1809 - loss 0.02688381 - time (sec): 159.57 - samples/sec: 2371.05 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-25 08:13:51,555 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-25 08:13:51,555 EPOCH 5 done: loss 0.0269 - lr: 0.000017
|
413 |
+
2023-10-25 08:13:56,313 DEV : loss 0.26100045442581177 - f1-score (micro avg) 0.6625
|
414 |
+
2023-10-25 08:13:56,335 saving best model
|
415 |
+
2023-10-25 08:13:57,053 ----------------------------------------------------------------------------------------------------
|
416 |
+
2023-10-25 08:14:12,919 epoch 6 - iter 180/1809 - loss 0.01378039 - time (sec): 15.86 - samples/sec: 2282.43 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-25 08:14:28,961 epoch 6 - iter 360/1809 - loss 0.01816354 - time (sec): 31.91 - samples/sec: 2360.47 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-25 08:14:45,179 epoch 6 - iter 540/1809 - loss 0.01885418 - time (sec): 48.12 - samples/sec: 2356.04 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-25 08:15:00,786 epoch 6 - iter 720/1809 - loss 0.01972614 - time (sec): 63.73 - samples/sec: 2349.29 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-25 08:15:16,751 epoch 6 - iter 900/1809 - loss 0.01899198 - time (sec): 79.70 - samples/sec: 2361.69 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-25 08:15:32,360 epoch 6 - iter 1080/1809 - loss 0.01852834 - time (sec): 95.31 - samples/sec: 2362.64 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-25 08:15:48,278 epoch 6 - iter 1260/1809 - loss 0.01797562 - time (sec): 111.22 - samples/sec: 2363.36 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-25 08:16:04,333 epoch 6 - iter 1440/1809 - loss 0.01764648 - time (sec): 127.28 - samples/sec: 2373.74 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-25 08:16:20,288 epoch 6 - iter 1620/1809 - loss 0.01787887 - time (sec): 143.23 - samples/sec: 2372.76 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-25 08:16:36,075 epoch 6 - iter 1800/1809 - loss 0.01811722 - time (sec): 159.02 - samples/sec: 2376.53 - lr: 0.000013 - momentum: 0.000000
|
426 |
+
2023-10-25 08:16:36,858 ----------------------------------------------------------------------------------------------------
|
427 |
+
2023-10-25 08:16:36,858 EPOCH 6 done: loss 0.0182 - lr: 0.000013
|
428 |
+
2023-10-25 08:16:42,101 DEV : loss 0.3313358724117279 - f1-score (micro avg) 0.6553
|
429 |
+
2023-10-25 08:16:42,123 ----------------------------------------------------------------------------------------------------
|
430 |
+
2023-10-25 08:16:57,953 epoch 7 - iter 180/1809 - loss 0.00872843 - time (sec): 15.83 - samples/sec: 2415.85 - lr: 0.000013 - momentum: 0.000000
|
431 |
+
2023-10-25 08:17:13,241 epoch 7 - iter 360/1809 - loss 0.00854091 - time (sec): 31.12 - samples/sec: 2417.71 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-25 08:17:29,025 epoch 7 - iter 540/1809 - loss 0.01084116 - time (sec): 46.90 - samples/sec: 2397.20 - lr: 0.000012 - momentum: 0.000000
|
433 |
+
2023-10-25 08:17:44,926 epoch 7 - iter 720/1809 - loss 0.01304482 - time (sec): 62.80 - samples/sec: 2399.67 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-25 08:18:01,388 epoch 7 - iter 900/1809 - loss 0.01267124 - time (sec): 79.26 - samples/sec: 2410.58 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-25 08:18:16,849 epoch 7 - iter 1080/1809 - loss 0.01242008 - time (sec): 94.73 - samples/sec: 2406.32 - lr: 0.000011 - momentum: 0.000000
|
436 |
+
2023-10-25 08:18:33,141 epoch 7 - iter 1260/1809 - loss 0.01230193 - time (sec): 111.02 - samples/sec: 2391.84 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-25 08:18:48,939 epoch 7 - iter 1440/1809 - loss 0.01248631 - time (sec): 126.82 - samples/sec: 2391.04 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-25 08:19:04,921 epoch 7 - iter 1620/1809 - loss 0.01261317 - time (sec): 142.80 - samples/sec: 2390.66 - lr: 0.000010 - momentum: 0.000000
|
439 |
+
2023-10-25 08:19:20,957 epoch 7 - iter 1800/1809 - loss 0.01276577 - time (sec): 158.83 - samples/sec: 2380.11 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-25 08:19:21,677 ----------------------------------------------------------------------------------------------------
|
441 |
+
2023-10-25 08:19:21,677 EPOCH 7 done: loss 0.0127 - lr: 0.000010
|
442 |
+
2023-10-25 08:19:26,940 DEV : loss 0.36011332273483276 - f1-score (micro avg) 0.6616
|
443 |
+
2023-10-25 08:19:26,962 ----------------------------------------------------------------------------------------------------
|
444 |
+
2023-10-25 08:19:43,149 epoch 8 - iter 180/1809 - loss 0.00761376 - time (sec): 16.19 - samples/sec: 2367.10 - lr: 0.000010 - momentum: 0.000000
|
445 |
+
2023-10-25 08:19:59,316 epoch 8 - iter 360/1809 - loss 0.00758239 - time (sec): 32.35 - samples/sec: 2344.06 - lr: 0.000009 - momentum: 0.000000
|
446 |
+
2023-10-25 08:20:15,488 epoch 8 - iter 540/1809 - loss 0.00857590 - time (sec): 48.52 - samples/sec: 2374.72 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-25 08:20:30,539 epoch 8 - iter 720/1809 - loss 0.00895513 - time (sec): 63.58 - samples/sec: 2393.92 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-25 08:20:46,448 epoch 8 - iter 900/1809 - loss 0.00825738 - time (sec): 79.49 - samples/sec: 2390.01 - lr: 0.000008 - momentum: 0.000000
|
449 |
+
2023-10-25 08:21:02,541 epoch 8 - iter 1080/1809 - loss 0.00881305 - time (sec): 95.58 - samples/sec: 2386.85 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-25 08:21:18,012 epoch 8 - iter 1260/1809 - loss 0.00882209 - time (sec): 111.05 - samples/sec: 2382.50 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-25 08:21:34,428 epoch 8 - iter 1440/1809 - loss 0.00827827 - time (sec): 127.47 - samples/sec: 2379.38 - lr: 0.000007 - momentum: 0.000000
|
452 |
+
2023-10-25 08:21:50,011 epoch 8 - iter 1620/1809 - loss 0.00824322 - time (sec): 143.05 - samples/sec: 2380.33 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-25 08:22:05,668 epoch 8 - iter 1800/1809 - loss 0.00850028 - time (sec): 158.70 - samples/sec: 2383.21 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-25 08:22:06,376 ----------------------------------------------------------------------------------------------------
|
455 |
+
2023-10-25 08:22:06,376 EPOCH 8 done: loss 0.0086 - lr: 0.000007
|
456 |
+
2023-10-25 08:22:11,644 DEV : loss 0.39194777607917786 - f1-score (micro avg) 0.6577
|
457 |
+
2023-10-25 08:22:11,666 ----------------------------------------------------------------------------------------------------
|
458 |
+
2023-10-25 08:22:28,097 epoch 9 - iter 180/1809 - loss 0.00369902 - time (sec): 16.43 - samples/sec: 2368.97 - lr: 0.000006 - momentum: 0.000000
|
459 |
+
2023-10-25 08:22:44,007 epoch 9 - iter 360/1809 - loss 0.00469730 - time (sec): 32.34 - samples/sec: 2414.47 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-25 08:22:59,689 epoch 9 - iter 540/1809 - loss 0.00431458 - time (sec): 48.02 - samples/sec: 2412.11 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-25 08:23:15,295 epoch 9 - iter 720/1809 - loss 0.00481666 - time (sec): 63.63 - samples/sec: 2391.66 - lr: 0.000005 - momentum: 0.000000
|
462 |
+
2023-10-25 08:23:31,490 epoch 9 - iter 900/1809 - loss 0.00493696 - time (sec): 79.82 - samples/sec: 2402.05 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-25 08:23:47,176 epoch 9 - iter 1080/1809 - loss 0.00523981 - time (sec): 95.51 - samples/sec: 2394.12 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-25 08:24:02,926 epoch 9 - iter 1260/1809 - loss 0.00497472 - time (sec): 111.26 - samples/sec: 2386.83 - lr: 0.000004 - momentum: 0.000000
|
465 |
+
2023-10-25 08:24:18,624 epoch 9 - iter 1440/1809 - loss 0.00565406 - time (sec): 126.96 - samples/sec: 2386.65 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-25 08:24:34,491 epoch 9 - iter 1620/1809 - loss 0.00563871 - time (sec): 142.82 - samples/sec: 2386.99 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-25 08:24:50,211 epoch 9 - iter 1800/1809 - loss 0.00567494 - time (sec): 158.54 - samples/sec: 2383.99 - lr: 0.000003 - momentum: 0.000000
|
468 |
+
2023-10-25 08:24:51,042 ----------------------------------------------------------------------------------------------------
|
469 |
+
2023-10-25 08:24:51,043 EPOCH 9 done: loss 0.0057 - lr: 0.000003
|
470 |
+
2023-10-25 08:24:55,799 DEV : loss 0.393858402967453 - f1-score (micro avg) 0.6654
|
471 |
+
2023-10-25 08:24:55,821 saving best model
|
472 |
+
2023-10-25 08:24:56,521 ----------------------------------------------------------------------------------------------------
|
473 |
+
2023-10-25 08:25:12,728 epoch 10 - iter 180/1809 - loss 0.00196544 - time (sec): 16.21 - samples/sec: 2353.56 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-25 08:25:28,376 epoch 10 - iter 360/1809 - loss 0.00228683 - time (sec): 31.85 - samples/sec: 2391.48 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-25 08:25:44,475 epoch 10 - iter 540/1809 - loss 0.00299234 - time (sec): 47.95 - samples/sec: 2361.65 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-25 08:26:00,434 epoch 10 - iter 720/1809 - loss 0.00293109 - time (sec): 63.91 - samples/sec: 2370.47 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-25 08:26:16,100 epoch 10 - iter 900/1809 - loss 0.00302326 - time (sec): 79.58 - samples/sec: 2361.79 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-25 08:26:31,796 epoch 10 - iter 1080/1809 - loss 0.00327400 - time (sec): 95.27 - samples/sec: 2365.70 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-25 08:26:47,735 epoch 10 - iter 1260/1809 - loss 0.00338707 - time (sec): 111.21 - samples/sec: 2357.01 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-25 08:27:03,951 epoch 10 - iter 1440/1809 - loss 0.00361125 - time (sec): 127.43 - samples/sec: 2361.94 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-25 08:27:20,042 epoch 10 - iter 1620/1809 - loss 0.00365904 - time (sec): 143.52 - samples/sec: 2367.04 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-25 08:27:36,103 epoch 10 - iter 1800/1809 - loss 0.00356670 - time (sec): 159.58 - samples/sec: 2371.48 - lr: 0.000000 - momentum: 0.000000
|
483 |
+
2023-10-25 08:27:36,804 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-25 08:27:36,804 EPOCH 10 done: loss 0.0036 - lr: 0.000000
|
485 |
+
2023-10-25 08:27:41,566 DEV : loss 0.40507274866104126 - f1-score (micro avg) 0.6612
|
486 |
+
2023-10-25 08:27:42,142 ----------------------------------------------------------------------------------------------------
|
487 |
+
2023-10-25 08:27:42,143 Loading model from best epoch ...
|
488 |
+
2023-10-25 08:27:44,091 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
489 |
+
2023-10-25 08:27:50,312
|
490 |
+
Results:
|
491 |
+
- F-score (micro) 0.6545
|
492 |
+
- F-score (macro) 0.5095
|
493 |
+
- Accuracy 0.4987
|
494 |
+
|
495 |
+
By class:
|
496 |
+
precision recall f1-score support
|
497 |
+
|
498 |
+
loc 0.6376 0.7919 0.7064 591
|
499 |
+
pers 0.5787 0.7619 0.6578 357
|
500 |
+
org 0.1791 0.1519 0.1644 79
|
501 |
+
|
502 |
+
micro avg 0.5917 0.7322 0.6545 1027
|
503 |
+
macro avg 0.4651 0.5686 0.5095 1027
|
504 |
+
weighted avg 0.5819 0.7322 0.6478 1027
|
505 |
+
|
506 |
+
2023-10-25 08:27:50,312 ----------------------------------------------------------------------------------------------------
|