stefan-it commited on
Commit
8ff7852
1 Parent(s): 98805a6

Upload ./training.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. training.log +506 -0
training.log ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-10-25 08:00:15,628 ----------------------------------------------------------------------------------------------------
2
+ 2023-10-25 08:00:15,629 Model: "SequenceTagger(
3
+ (embeddings): TransformerWordEmbeddings(
4
+ (model): BertModel(
5
+ (embeddings): BertEmbeddings(
6
+ (word_embeddings): Embedding(64001, 768)
7
+ (position_embeddings): Embedding(512, 768)
8
+ (token_type_embeddings): Embedding(2, 768)
9
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
10
+ (dropout): Dropout(p=0.1, inplace=False)
11
+ )
12
+ (encoder): BertEncoder(
13
+ (layer): ModuleList(
14
+ (0): BertLayer(
15
+ (attention): BertAttention(
16
+ (self): BertSelfAttention(
17
+ (query): Linear(in_features=768, out_features=768, bias=True)
18
+ (key): Linear(in_features=768, out_features=768, bias=True)
19
+ (value): Linear(in_features=768, out_features=768, bias=True)
20
+ (dropout): Dropout(p=0.1, inplace=False)
21
+ )
22
+ (output): BertSelfOutput(
23
+ (dense): Linear(in_features=768, out_features=768, bias=True)
24
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
25
+ (dropout): Dropout(p=0.1, inplace=False)
26
+ )
27
+ )
28
+ (intermediate): BertIntermediate(
29
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
30
+ (intermediate_act_fn): GELUActivation()
31
+ )
32
+ (output): BertOutput(
33
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
34
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
35
+ (dropout): Dropout(p=0.1, inplace=False)
36
+ )
37
+ )
38
+ (1): BertLayer(
39
+ (attention): BertAttention(
40
+ (self): BertSelfAttention(
41
+ (query): Linear(in_features=768, out_features=768, bias=True)
42
+ (key): Linear(in_features=768, out_features=768, bias=True)
43
+ (value): Linear(in_features=768, out_features=768, bias=True)
44
+ (dropout): Dropout(p=0.1, inplace=False)
45
+ )
46
+ (output): BertSelfOutput(
47
+ (dense): Linear(in_features=768, out_features=768, bias=True)
48
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
49
+ (dropout): Dropout(p=0.1, inplace=False)
50
+ )
51
+ )
52
+ (intermediate): BertIntermediate(
53
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
54
+ (intermediate_act_fn): GELUActivation()
55
+ )
56
+ (output): BertOutput(
57
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
58
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
59
+ (dropout): Dropout(p=0.1, inplace=False)
60
+ )
61
+ )
62
+ (2): BertLayer(
63
+ (attention): BertAttention(
64
+ (self): BertSelfAttention(
65
+ (query): Linear(in_features=768, out_features=768, bias=True)
66
+ (key): Linear(in_features=768, out_features=768, bias=True)
67
+ (value): Linear(in_features=768, out_features=768, bias=True)
68
+ (dropout): Dropout(p=0.1, inplace=False)
69
+ )
70
+ (output): BertSelfOutput(
71
+ (dense): Linear(in_features=768, out_features=768, bias=True)
72
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
73
+ (dropout): Dropout(p=0.1, inplace=False)
74
+ )
75
+ )
76
+ (intermediate): BertIntermediate(
77
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
78
+ (intermediate_act_fn): GELUActivation()
79
+ )
80
+ (output): BertOutput(
81
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
82
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
83
+ (dropout): Dropout(p=0.1, inplace=False)
84
+ )
85
+ )
86
+ (3): BertLayer(
87
+ (attention): BertAttention(
88
+ (self): BertSelfAttention(
89
+ (query): Linear(in_features=768, out_features=768, bias=True)
90
+ (key): Linear(in_features=768, out_features=768, bias=True)
91
+ (value): Linear(in_features=768, out_features=768, bias=True)
92
+ (dropout): Dropout(p=0.1, inplace=False)
93
+ )
94
+ (output): BertSelfOutput(
95
+ (dense): Linear(in_features=768, out_features=768, bias=True)
96
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
97
+ (dropout): Dropout(p=0.1, inplace=False)
98
+ )
99
+ )
100
+ (intermediate): BertIntermediate(
101
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
102
+ (intermediate_act_fn): GELUActivation()
103
+ )
104
+ (output): BertOutput(
105
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
106
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
107
+ (dropout): Dropout(p=0.1, inplace=False)
108
+ )
109
+ )
110
+ (4): BertLayer(
111
+ (attention): BertAttention(
112
+ (self): BertSelfAttention(
113
+ (query): Linear(in_features=768, out_features=768, bias=True)
114
+ (key): Linear(in_features=768, out_features=768, bias=True)
115
+ (value): Linear(in_features=768, out_features=768, bias=True)
116
+ (dropout): Dropout(p=0.1, inplace=False)
117
+ )
118
+ (output): BertSelfOutput(
119
+ (dense): Linear(in_features=768, out_features=768, bias=True)
120
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
121
+ (dropout): Dropout(p=0.1, inplace=False)
122
+ )
123
+ )
124
+ (intermediate): BertIntermediate(
125
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
126
+ (intermediate_act_fn): GELUActivation()
127
+ )
128
+ (output): BertOutput(
129
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
130
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
131
+ (dropout): Dropout(p=0.1, inplace=False)
132
+ )
133
+ )
134
+ (5): BertLayer(
135
+ (attention): BertAttention(
136
+ (self): BertSelfAttention(
137
+ (query): Linear(in_features=768, out_features=768, bias=True)
138
+ (key): Linear(in_features=768, out_features=768, bias=True)
139
+ (value): Linear(in_features=768, out_features=768, bias=True)
140
+ (dropout): Dropout(p=0.1, inplace=False)
141
+ )
142
+ (output): BertSelfOutput(
143
+ (dense): Linear(in_features=768, out_features=768, bias=True)
144
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
145
+ (dropout): Dropout(p=0.1, inplace=False)
146
+ )
147
+ )
148
+ (intermediate): BertIntermediate(
149
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
150
+ (intermediate_act_fn): GELUActivation()
151
+ )
152
+ (output): BertOutput(
153
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
154
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
155
+ (dropout): Dropout(p=0.1, inplace=False)
156
+ )
157
+ )
158
+ (6): BertLayer(
159
+ (attention): BertAttention(
160
+ (self): BertSelfAttention(
161
+ (query): Linear(in_features=768, out_features=768, bias=True)
162
+ (key): Linear(in_features=768, out_features=768, bias=True)
163
+ (value): Linear(in_features=768, out_features=768, bias=True)
164
+ (dropout): Dropout(p=0.1, inplace=False)
165
+ )
166
+ (output): BertSelfOutput(
167
+ (dense): Linear(in_features=768, out_features=768, bias=True)
168
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
169
+ (dropout): Dropout(p=0.1, inplace=False)
170
+ )
171
+ )
172
+ (intermediate): BertIntermediate(
173
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
174
+ (intermediate_act_fn): GELUActivation()
175
+ )
176
+ (output): BertOutput(
177
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
178
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
179
+ (dropout): Dropout(p=0.1, inplace=False)
180
+ )
181
+ )
182
+ (7): BertLayer(
183
+ (attention): BertAttention(
184
+ (self): BertSelfAttention(
185
+ (query): Linear(in_features=768, out_features=768, bias=True)
186
+ (key): Linear(in_features=768, out_features=768, bias=True)
187
+ (value): Linear(in_features=768, out_features=768, bias=True)
188
+ (dropout): Dropout(p=0.1, inplace=False)
189
+ )
190
+ (output): BertSelfOutput(
191
+ (dense): Linear(in_features=768, out_features=768, bias=True)
192
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
193
+ (dropout): Dropout(p=0.1, inplace=False)
194
+ )
195
+ )
196
+ (intermediate): BertIntermediate(
197
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
198
+ (intermediate_act_fn): GELUActivation()
199
+ )
200
+ (output): BertOutput(
201
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
202
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
203
+ (dropout): Dropout(p=0.1, inplace=False)
204
+ )
205
+ )
206
+ (8): BertLayer(
207
+ (attention): BertAttention(
208
+ (self): BertSelfAttention(
209
+ (query): Linear(in_features=768, out_features=768, bias=True)
210
+ (key): Linear(in_features=768, out_features=768, bias=True)
211
+ (value): Linear(in_features=768, out_features=768, bias=True)
212
+ (dropout): Dropout(p=0.1, inplace=False)
213
+ )
214
+ (output): BertSelfOutput(
215
+ (dense): Linear(in_features=768, out_features=768, bias=True)
216
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
217
+ (dropout): Dropout(p=0.1, inplace=False)
218
+ )
219
+ )
220
+ (intermediate): BertIntermediate(
221
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
222
+ (intermediate_act_fn): GELUActivation()
223
+ )
224
+ (output): BertOutput(
225
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
226
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
227
+ (dropout): Dropout(p=0.1, inplace=False)
228
+ )
229
+ )
230
+ (9): BertLayer(
231
+ (attention): BertAttention(
232
+ (self): BertSelfAttention(
233
+ (query): Linear(in_features=768, out_features=768, bias=True)
234
+ (key): Linear(in_features=768, out_features=768, bias=True)
235
+ (value): Linear(in_features=768, out_features=768, bias=True)
236
+ (dropout): Dropout(p=0.1, inplace=False)
237
+ )
238
+ (output): BertSelfOutput(
239
+ (dense): Linear(in_features=768, out_features=768, bias=True)
240
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
241
+ (dropout): Dropout(p=0.1, inplace=False)
242
+ )
243
+ )
244
+ (intermediate): BertIntermediate(
245
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
246
+ (intermediate_act_fn): GELUActivation()
247
+ )
248
+ (output): BertOutput(
249
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
250
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
251
+ (dropout): Dropout(p=0.1, inplace=False)
252
+ )
253
+ )
254
+ (10): BertLayer(
255
+ (attention): BertAttention(
256
+ (self): BertSelfAttention(
257
+ (query): Linear(in_features=768, out_features=768, bias=True)
258
+ (key): Linear(in_features=768, out_features=768, bias=True)
259
+ (value): Linear(in_features=768, out_features=768, bias=True)
260
+ (dropout): Dropout(p=0.1, inplace=False)
261
+ )
262
+ (output): BertSelfOutput(
263
+ (dense): Linear(in_features=768, out_features=768, bias=True)
264
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
265
+ (dropout): Dropout(p=0.1, inplace=False)
266
+ )
267
+ )
268
+ (intermediate): BertIntermediate(
269
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
270
+ (intermediate_act_fn): GELUActivation()
271
+ )
272
+ (output): BertOutput(
273
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
274
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
275
+ (dropout): Dropout(p=0.1, inplace=False)
276
+ )
277
+ )
278
+ (11): BertLayer(
279
+ (attention): BertAttention(
280
+ (self): BertSelfAttention(
281
+ (query): Linear(in_features=768, out_features=768, bias=True)
282
+ (key): Linear(in_features=768, out_features=768, bias=True)
283
+ (value): Linear(in_features=768, out_features=768, bias=True)
284
+ (dropout): Dropout(p=0.1, inplace=False)
285
+ )
286
+ (output): BertSelfOutput(
287
+ (dense): Linear(in_features=768, out_features=768, bias=True)
288
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
289
+ (dropout): Dropout(p=0.1, inplace=False)
290
+ )
291
+ )
292
+ (intermediate): BertIntermediate(
293
+ (dense): Linear(in_features=768, out_features=3072, bias=True)
294
+ (intermediate_act_fn): GELUActivation()
295
+ )
296
+ (output): BertOutput(
297
+ (dense): Linear(in_features=3072, out_features=768, bias=True)
298
+ (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
299
+ (dropout): Dropout(p=0.1, inplace=False)
300
+ )
301
+ )
302
+ )
303
+ )
304
+ (pooler): BertPooler(
305
+ (dense): Linear(in_features=768, out_features=768, bias=True)
306
+ (activation): Tanh()
307
+ )
308
+ )
309
+ )
310
+ (locked_dropout): LockedDropout(p=0.5)
311
+ (linear): Linear(in_features=768, out_features=13, bias=True)
312
+ (loss_function): CrossEntropyLoss()
313
+ )"
314
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
315
+ 2023-10-25 08:00:15,630 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
316
+ - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
317
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
318
+ 2023-10-25 08:00:15,630 Train: 14465 sentences
319
+ 2023-10-25 08:00:15,630 (train_with_dev=False, train_with_test=False)
320
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
321
+ 2023-10-25 08:00:15,630 Training Params:
322
+ 2023-10-25 08:00:15,630 - learning_rate: "3e-05"
323
+ 2023-10-25 08:00:15,630 - mini_batch_size: "8"
324
+ 2023-10-25 08:00:15,630 - max_epochs: "10"
325
+ 2023-10-25 08:00:15,630 - shuffle: "True"
326
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
327
+ 2023-10-25 08:00:15,630 Plugins:
328
+ 2023-10-25 08:00:15,630 - TensorboardLogger
329
+ 2023-10-25 08:00:15,630 - LinearScheduler | warmup_fraction: '0.1'
330
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
331
+ 2023-10-25 08:00:15,630 Final evaluation on model from best epoch (best-model.pt)
332
+ 2023-10-25 08:00:15,630 - metric: "('micro avg', 'f1-score')"
333
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
334
+ 2023-10-25 08:00:15,630 Computation:
335
+ 2023-10-25 08:00:15,630 - compute on device: cuda:0
336
+ 2023-10-25 08:00:15,630 - embedding storage: none
337
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
338
+ 2023-10-25 08:00:15,630 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
339
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
340
+ 2023-10-25 08:00:15,630 ----------------------------------------------------------------------------------------------------
341
+ 2023-10-25 08:00:15,630 Logging anything other than scalars to TensorBoard is currently not supported.
342
+ 2023-10-25 08:00:31,579 epoch 1 - iter 180/1809 - loss 1.59994791 - time (sec): 15.95 - samples/sec: 2365.16 - lr: 0.000003 - momentum: 0.000000
343
+ 2023-10-25 08:00:46,626 epoch 1 - iter 360/1809 - loss 0.90942152 - time (sec): 31.00 - samples/sec: 2420.21 - lr: 0.000006 - momentum: 0.000000
344
+ 2023-10-25 08:01:02,121 epoch 1 - iter 540/1809 - loss 0.65057194 - time (sec): 46.49 - samples/sec: 2437.06 - lr: 0.000009 - momentum: 0.000000
345
+ 2023-10-25 08:01:17,548 epoch 1 - iter 720/1809 - loss 0.52234297 - time (sec): 61.92 - samples/sec: 2445.01 - lr: 0.000012 - momentum: 0.000000
346
+ 2023-10-25 08:01:32,921 epoch 1 - iter 900/1809 - loss 0.44356097 - time (sec): 77.29 - samples/sec: 2440.72 - lr: 0.000015 - momentum: 0.000000
347
+ 2023-10-25 08:01:48,608 epoch 1 - iter 1080/1809 - loss 0.38806485 - time (sec): 92.98 - samples/sec: 2438.35 - lr: 0.000018 - momentum: 0.000000
348
+ 2023-10-25 08:02:04,004 epoch 1 - iter 1260/1809 - loss 0.34665146 - time (sec): 108.37 - samples/sec: 2444.01 - lr: 0.000021 - momentum: 0.000000
349
+ 2023-10-25 08:02:19,487 epoch 1 - iter 1440/1809 - loss 0.31692748 - time (sec): 123.86 - samples/sec: 2440.98 - lr: 0.000024 - momentum: 0.000000
350
+ 2023-10-25 08:02:35,196 epoch 1 - iter 1620/1809 - loss 0.29267973 - time (sec): 139.57 - samples/sec: 2437.07 - lr: 0.000027 - momentum: 0.000000
351
+ 2023-10-25 08:02:50,837 epoch 1 - iter 1800/1809 - loss 0.27406237 - time (sec): 155.21 - samples/sec: 2436.52 - lr: 0.000030 - momentum: 0.000000
352
+ 2023-10-25 08:02:51,583 ----------------------------------------------------------------------------------------------------
353
+ 2023-10-25 08:02:51,583 EPOCH 1 done: loss 0.2733 - lr: 0.000030
354
+ 2023-10-25 08:02:56,022 DEV : loss 0.11878068745136261 - f1-score (micro avg) 0.6243
355
+ 2023-10-25 08:02:56,043 saving best model
356
+ 2023-10-25 08:02:56,600 ----------------------------------------------------------------------------------------------------
357
+ 2023-10-25 08:03:12,137 epoch 2 - iter 180/1809 - loss 0.08520146 - time (sec): 15.54 - samples/sec: 2457.95 - lr: 0.000030 - momentum: 0.000000
358
+ 2023-10-25 08:03:28,446 epoch 2 - iter 360/1809 - loss 0.09154462 - time (sec): 31.84 - samples/sec: 2418.86 - lr: 0.000029 - momentum: 0.000000
359
+ 2023-10-25 08:03:44,444 epoch 2 - iter 540/1809 - loss 0.09248862 - time (sec): 47.84 - samples/sec: 2412.53 - lr: 0.000029 - momentum: 0.000000
360
+ 2023-10-25 08:04:00,307 epoch 2 - iter 720/1809 - loss 0.08973269 - time (sec): 63.71 - samples/sec: 2404.62 - lr: 0.000029 - momentum: 0.000000
361
+ 2023-10-25 08:04:16,033 epoch 2 - iter 900/1809 - loss 0.08876132 - time (sec): 79.43 - samples/sec: 2403.58 - lr: 0.000028 - momentum: 0.000000
362
+ 2023-10-25 08:04:31,870 epoch 2 - iter 1080/1809 - loss 0.08756439 - time (sec): 95.27 - samples/sec: 2394.03 - lr: 0.000028 - momentum: 0.000000
363
+ 2023-10-25 08:04:47,396 epoch 2 - iter 1260/1809 - loss 0.08711257 - time (sec): 110.79 - samples/sec: 2393.13 - lr: 0.000028 - momentum: 0.000000
364
+ 2023-10-25 08:05:03,398 epoch 2 - iter 1440/1809 - loss 0.08478479 - time (sec): 126.80 - samples/sec: 2393.23 - lr: 0.000027 - momentum: 0.000000
365
+ 2023-10-25 08:05:19,435 epoch 2 - iter 1620/1809 - loss 0.08360993 - time (sec): 142.83 - samples/sec: 2388.17 - lr: 0.000027 - momentum: 0.000000
366
+ 2023-10-25 08:05:34,900 epoch 2 - iter 1800/1809 - loss 0.08306504 - time (sec): 158.30 - samples/sec: 2388.83 - lr: 0.000027 - momentum: 0.000000
367
+ 2023-10-25 08:05:35,628 ----------------------------------------------------------------------------------------------------
368
+ 2023-10-25 08:05:35,629 EPOCH 2 done: loss 0.0831 - lr: 0.000027
369
+ 2023-10-25 08:05:40,837 DEV : loss 0.13267631828784943 - f1-score (micro avg) 0.6358
370
+ 2023-10-25 08:05:40,859 saving best model
371
+ 2023-10-25 08:05:41,675 ----------------------------------------------------------------------------------------------------
372
+ 2023-10-25 08:05:57,585 epoch 3 - iter 180/1809 - loss 0.06089348 - time (sec): 15.91 - samples/sec: 2355.16 - lr: 0.000026 - momentum: 0.000000
373
+ 2023-10-25 08:06:13,768 epoch 3 - iter 360/1809 - loss 0.06038894 - time (sec): 32.09 - samples/sec: 2360.88 - lr: 0.000026 - momentum: 0.000000
374
+ 2023-10-25 08:06:29,084 epoch 3 - iter 540/1809 - loss 0.05526036 - time (sec): 47.41 - samples/sec: 2389.71 - lr: 0.000026 - momentum: 0.000000
375
+ 2023-10-25 08:06:44,661 epoch 3 - iter 720/1809 - loss 0.05749612 - time (sec): 62.98 - samples/sec: 2390.73 - lr: 0.000025 - momentum: 0.000000
376
+ 2023-10-25 08:07:00,404 epoch 3 - iter 900/1809 - loss 0.05617974 - time (sec): 78.73 - samples/sec: 2403.04 - lr: 0.000025 - momentum: 0.000000
377
+ 2023-10-25 08:07:16,708 epoch 3 - iter 1080/1809 - loss 0.05706057 - time (sec): 95.03 - samples/sec: 2404.56 - lr: 0.000025 - momentum: 0.000000
378
+ 2023-10-25 08:07:32,106 epoch 3 - iter 1260/1809 - loss 0.05724190 - time (sec): 110.43 - samples/sec: 2401.49 - lr: 0.000024 - momentum: 0.000000
379
+ 2023-10-25 08:07:48,254 epoch 3 - iter 1440/1809 - loss 0.05718478 - time (sec): 126.58 - samples/sec: 2408.93 - lr: 0.000024 - momentum: 0.000000
380
+ 2023-10-25 08:08:04,408 epoch 3 - iter 1620/1809 - loss 0.05826610 - time (sec): 142.73 - samples/sec: 2395.50 - lr: 0.000024 - momentum: 0.000000
381
+ 2023-10-25 08:08:19,957 epoch 3 - iter 1800/1809 - loss 0.05919743 - time (sec): 158.28 - samples/sec: 2391.38 - lr: 0.000023 - momentum: 0.000000
382
+ 2023-10-25 08:08:20,676 ----------------------------------------------------------------------------------------------------
383
+ 2023-10-25 08:08:20,676 EPOCH 3 done: loss 0.0592 - lr: 0.000023
384
+ 2023-10-25 08:08:25,440 DEV : loss 0.1354532539844513 - f1-score (micro avg) 0.6314
385
+ 2023-10-25 08:08:25,462 ----------------------------------------------------------------------------------------------------
386
+ 2023-10-25 08:08:41,845 epoch 4 - iter 180/1809 - loss 0.03568652 - time (sec): 16.38 - samples/sec: 2312.63 - lr: 0.000023 - momentum: 0.000000
387
+ 2023-10-25 08:08:58,273 epoch 4 - iter 360/1809 - loss 0.03716226 - time (sec): 32.81 - samples/sec: 2346.64 - lr: 0.000023 - momentum: 0.000000
388
+ 2023-10-25 08:09:13,745 epoch 4 - iter 540/1809 - loss 0.03968774 - time (sec): 48.28 - samples/sec: 2347.42 - lr: 0.000022 - momentum: 0.000000
389
+ 2023-10-25 08:09:29,537 epoch 4 - iter 720/1809 - loss 0.04000489 - time (sec): 64.07 - samples/sec: 2355.52 - lr: 0.000022 - momentum: 0.000000
390
+ 2023-10-25 08:09:45,388 epoch 4 - iter 900/1809 - loss 0.03962584 - time (sec): 79.93 - samples/sec: 2362.15 - lr: 0.000022 - momentum: 0.000000
391
+ 2023-10-25 08:10:01,321 epoch 4 - iter 1080/1809 - loss 0.03940596 - time (sec): 95.86 - samples/sec: 2371.85 - lr: 0.000021 - momentum: 0.000000
392
+ 2023-10-25 08:10:17,098 epoch 4 - iter 1260/1809 - loss 0.04055800 - time (sec): 111.64 - samples/sec: 2371.02 - lr: 0.000021 - momentum: 0.000000
393
+ 2023-10-25 08:10:32,621 epoch 4 - iter 1440/1809 - loss 0.04022573 - time (sec): 127.16 - samples/sec: 2373.19 - lr: 0.000021 - momentum: 0.000000
394
+ 2023-10-25 08:10:48,660 epoch 4 - iter 1620/1809 - loss 0.04065113 - time (sec): 143.20 - samples/sec: 2370.71 - lr: 0.000020 - momentum: 0.000000
395
+ 2023-10-25 08:11:04,972 epoch 4 - iter 1800/1809 - loss 0.04133841 - time (sec): 159.51 - samples/sec: 2370.42 - lr: 0.000020 - momentum: 0.000000
396
+ 2023-10-25 08:11:05,824 ----------------------------------------------------------------------------------------------------
397
+ 2023-10-25 08:11:05,824 EPOCH 4 done: loss 0.0414 - lr: 0.000020
398
+ 2023-10-25 08:11:10,594 DEV : loss 0.2289542257785797 - f1-score (micro avg) 0.6386
399
+ 2023-10-25 08:11:10,616 saving best model
400
+ 2023-10-25 08:11:11,305 ----------------------------------------------------------------------------------------------------
401
+ 2023-10-25 08:11:26,893 epoch 5 - iter 180/1809 - loss 0.02492765 - time (sec): 15.59 - samples/sec: 2342.07 - lr: 0.000020 - momentum: 0.000000
402
+ 2023-10-25 08:11:42,990 epoch 5 - iter 360/1809 - loss 0.02595936 - time (sec): 31.68 - samples/sec: 2334.66 - lr: 0.000019 - momentum: 0.000000
403
+ 2023-10-25 08:11:58,875 epoch 5 - iter 540/1809 - loss 0.02591071 - time (sec): 47.57 - samples/sec: 2350.63 - lr: 0.000019 - momentum: 0.000000
404
+ 2023-10-25 08:12:14,762 epoch 5 - iter 720/1809 - loss 0.02549117 - time (sec): 63.46 - samples/sec: 2358.16 - lr: 0.000019 - momentum: 0.000000
405
+ 2023-10-25 08:12:30,706 epoch 5 - iter 900/1809 - loss 0.02448476 - time (sec): 79.40 - samples/sec: 2376.53 - lr: 0.000018 - momentum: 0.000000
406
+ 2023-10-25 08:12:46,502 epoch 5 - iter 1080/1809 - loss 0.02533076 - time (sec): 95.20 - samples/sec: 2368.81 - lr: 0.000018 - momentum: 0.000000
407
+ 2023-10-25 08:13:02,210 epoch 5 - iter 1260/1809 - loss 0.02562868 - time (sec): 110.90 - samples/sec: 2367.94 - lr: 0.000018 - momentum: 0.000000
408
+ 2023-10-25 08:13:18,742 epoch 5 - iter 1440/1809 - loss 0.02590139 - time (sec): 127.44 - samples/sec: 2370.63 - lr: 0.000017 - momentum: 0.000000
409
+ 2023-10-25 08:13:34,484 epoch 5 - iter 1620/1809 - loss 0.02625493 - time (sec): 143.18 - samples/sec: 2370.26 - lr: 0.000017 - momentum: 0.000000
410
+ 2023-10-25 08:13:50,871 epoch 5 - iter 1800/1809 - loss 0.02688381 - time (sec): 159.57 - samples/sec: 2371.05 - lr: 0.000017 - momentum: 0.000000
411
+ 2023-10-25 08:13:51,555 ----------------------------------------------------------------------------------------------------
412
+ 2023-10-25 08:13:51,555 EPOCH 5 done: loss 0.0269 - lr: 0.000017
413
+ 2023-10-25 08:13:56,313 DEV : loss 0.26100045442581177 - f1-score (micro avg) 0.6625
414
+ 2023-10-25 08:13:56,335 saving best model
415
+ 2023-10-25 08:13:57,053 ----------------------------------------------------------------------------------------------------
416
+ 2023-10-25 08:14:12,919 epoch 6 - iter 180/1809 - loss 0.01378039 - time (sec): 15.86 - samples/sec: 2282.43 - lr: 0.000016 - momentum: 0.000000
417
+ 2023-10-25 08:14:28,961 epoch 6 - iter 360/1809 - loss 0.01816354 - time (sec): 31.91 - samples/sec: 2360.47 - lr: 0.000016 - momentum: 0.000000
418
+ 2023-10-25 08:14:45,179 epoch 6 - iter 540/1809 - loss 0.01885418 - time (sec): 48.12 - samples/sec: 2356.04 - lr: 0.000016 - momentum: 0.000000
419
+ 2023-10-25 08:15:00,786 epoch 6 - iter 720/1809 - loss 0.01972614 - time (sec): 63.73 - samples/sec: 2349.29 - lr: 0.000015 - momentum: 0.000000
420
+ 2023-10-25 08:15:16,751 epoch 6 - iter 900/1809 - loss 0.01899198 - time (sec): 79.70 - samples/sec: 2361.69 - lr: 0.000015 - momentum: 0.000000
421
+ 2023-10-25 08:15:32,360 epoch 6 - iter 1080/1809 - loss 0.01852834 - time (sec): 95.31 - samples/sec: 2362.64 - lr: 0.000015 - momentum: 0.000000
422
+ 2023-10-25 08:15:48,278 epoch 6 - iter 1260/1809 - loss 0.01797562 - time (sec): 111.22 - samples/sec: 2363.36 - lr: 0.000014 - momentum: 0.000000
423
+ 2023-10-25 08:16:04,333 epoch 6 - iter 1440/1809 - loss 0.01764648 - time (sec): 127.28 - samples/sec: 2373.74 - lr: 0.000014 - momentum: 0.000000
424
+ 2023-10-25 08:16:20,288 epoch 6 - iter 1620/1809 - loss 0.01787887 - time (sec): 143.23 - samples/sec: 2372.76 - lr: 0.000014 - momentum: 0.000000
425
+ 2023-10-25 08:16:36,075 epoch 6 - iter 1800/1809 - loss 0.01811722 - time (sec): 159.02 - samples/sec: 2376.53 - lr: 0.000013 - momentum: 0.000000
426
+ 2023-10-25 08:16:36,858 ----------------------------------------------------------------------------------------------------
427
+ 2023-10-25 08:16:36,858 EPOCH 6 done: loss 0.0182 - lr: 0.000013
428
+ 2023-10-25 08:16:42,101 DEV : loss 0.3313358724117279 - f1-score (micro avg) 0.6553
429
+ 2023-10-25 08:16:42,123 ----------------------------------------------------------------------------------------------------
430
+ 2023-10-25 08:16:57,953 epoch 7 - iter 180/1809 - loss 0.00872843 - time (sec): 15.83 - samples/sec: 2415.85 - lr: 0.000013 - momentum: 0.000000
431
+ 2023-10-25 08:17:13,241 epoch 7 - iter 360/1809 - loss 0.00854091 - time (sec): 31.12 - samples/sec: 2417.71 - lr: 0.000013 - momentum: 0.000000
432
+ 2023-10-25 08:17:29,025 epoch 7 - iter 540/1809 - loss 0.01084116 - time (sec): 46.90 - samples/sec: 2397.20 - lr: 0.000012 - momentum: 0.000000
433
+ 2023-10-25 08:17:44,926 epoch 7 - iter 720/1809 - loss 0.01304482 - time (sec): 62.80 - samples/sec: 2399.67 - lr: 0.000012 - momentum: 0.000000
434
+ 2023-10-25 08:18:01,388 epoch 7 - iter 900/1809 - loss 0.01267124 - time (sec): 79.26 - samples/sec: 2410.58 - lr: 0.000012 - momentum: 0.000000
435
+ 2023-10-25 08:18:16,849 epoch 7 - iter 1080/1809 - loss 0.01242008 - time (sec): 94.73 - samples/sec: 2406.32 - lr: 0.000011 - momentum: 0.000000
436
+ 2023-10-25 08:18:33,141 epoch 7 - iter 1260/1809 - loss 0.01230193 - time (sec): 111.02 - samples/sec: 2391.84 - lr: 0.000011 - momentum: 0.000000
437
+ 2023-10-25 08:18:48,939 epoch 7 - iter 1440/1809 - loss 0.01248631 - time (sec): 126.82 - samples/sec: 2391.04 - lr: 0.000011 - momentum: 0.000000
438
+ 2023-10-25 08:19:04,921 epoch 7 - iter 1620/1809 - loss 0.01261317 - time (sec): 142.80 - samples/sec: 2390.66 - lr: 0.000010 - momentum: 0.000000
439
+ 2023-10-25 08:19:20,957 epoch 7 - iter 1800/1809 - loss 0.01276577 - time (sec): 158.83 - samples/sec: 2380.11 - lr: 0.000010 - momentum: 0.000000
440
+ 2023-10-25 08:19:21,677 ----------------------------------------------------------------------------------------------------
441
+ 2023-10-25 08:19:21,677 EPOCH 7 done: loss 0.0127 - lr: 0.000010
442
+ 2023-10-25 08:19:26,940 DEV : loss 0.36011332273483276 - f1-score (micro avg) 0.6616
443
+ 2023-10-25 08:19:26,962 ----------------------------------------------------------------------------------------------------
444
+ 2023-10-25 08:19:43,149 epoch 8 - iter 180/1809 - loss 0.00761376 - time (sec): 16.19 - samples/sec: 2367.10 - lr: 0.000010 - momentum: 0.000000
445
+ 2023-10-25 08:19:59,316 epoch 8 - iter 360/1809 - loss 0.00758239 - time (sec): 32.35 - samples/sec: 2344.06 - lr: 0.000009 - momentum: 0.000000
446
+ 2023-10-25 08:20:15,488 epoch 8 - iter 540/1809 - loss 0.00857590 - time (sec): 48.52 - samples/sec: 2374.72 - lr: 0.000009 - momentum: 0.000000
447
+ 2023-10-25 08:20:30,539 epoch 8 - iter 720/1809 - loss 0.00895513 - time (sec): 63.58 - samples/sec: 2393.92 - lr: 0.000009 - momentum: 0.000000
448
+ 2023-10-25 08:20:46,448 epoch 8 - iter 900/1809 - loss 0.00825738 - time (sec): 79.49 - samples/sec: 2390.01 - lr: 0.000008 - momentum: 0.000000
449
+ 2023-10-25 08:21:02,541 epoch 8 - iter 1080/1809 - loss 0.00881305 - time (sec): 95.58 - samples/sec: 2386.85 - lr: 0.000008 - momentum: 0.000000
450
+ 2023-10-25 08:21:18,012 epoch 8 - iter 1260/1809 - loss 0.00882209 - time (sec): 111.05 - samples/sec: 2382.50 - lr: 0.000008 - momentum: 0.000000
451
+ 2023-10-25 08:21:34,428 epoch 8 - iter 1440/1809 - loss 0.00827827 - time (sec): 127.47 - samples/sec: 2379.38 - lr: 0.000007 - momentum: 0.000000
452
+ 2023-10-25 08:21:50,011 epoch 8 - iter 1620/1809 - loss 0.00824322 - time (sec): 143.05 - samples/sec: 2380.33 - lr: 0.000007 - momentum: 0.000000
453
+ 2023-10-25 08:22:05,668 epoch 8 - iter 1800/1809 - loss 0.00850028 - time (sec): 158.70 - samples/sec: 2383.21 - lr: 0.000007 - momentum: 0.000000
454
+ 2023-10-25 08:22:06,376 ----------------------------------------------------------------------------------------------------
455
+ 2023-10-25 08:22:06,376 EPOCH 8 done: loss 0.0086 - lr: 0.000007
456
+ 2023-10-25 08:22:11,644 DEV : loss 0.39194777607917786 - f1-score (micro avg) 0.6577
457
+ 2023-10-25 08:22:11,666 ----------------------------------------------------------------------------------------------------
458
+ 2023-10-25 08:22:28,097 epoch 9 - iter 180/1809 - loss 0.00369902 - time (sec): 16.43 - samples/sec: 2368.97 - lr: 0.000006 - momentum: 0.000000
459
+ 2023-10-25 08:22:44,007 epoch 9 - iter 360/1809 - loss 0.00469730 - time (sec): 32.34 - samples/sec: 2414.47 - lr: 0.000006 - momentum: 0.000000
460
+ 2023-10-25 08:22:59,689 epoch 9 - iter 540/1809 - loss 0.00431458 - time (sec): 48.02 - samples/sec: 2412.11 - lr: 0.000006 - momentum: 0.000000
461
+ 2023-10-25 08:23:15,295 epoch 9 - iter 720/1809 - loss 0.00481666 - time (sec): 63.63 - samples/sec: 2391.66 - lr: 0.000005 - momentum: 0.000000
462
+ 2023-10-25 08:23:31,490 epoch 9 - iter 900/1809 - loss 0.00493696 - time (sec): 79.82 - samples/sec: 2402.05 - lr: 0.000005 - momentum: 0.000000
463
+ 2023-10-25 08:23:47,176 epoch 9 - iter 1080/1809 - loss 0.00523981 - time (sec): 95.51 - samples/sec: 2394.12 - lr: 0.000005 - momentum: 0.000000
464
+ 2023-10-25 08:24:02,926 epoch 9 - iter 1260/1809 - loss 0.00497472 - time (sec): 111.26 - samples/sec: 2386.83 - lr: 0.000004 - momentum: 0.000000
465
+ 2023-10-25 08:24:18,624 epoch 9 - iter 1440/1809 - loss 0.00565406 - time (sec): 126.96 - samples/sec: 2386.65 - lr: 0.000004 - momentum: 0.000000
466
+ 2023-10-25 08:24:34,491 epoch 9 - iter 1620/1809 - loss 0.00563871 - time (sec): 142.82 - samples/sec: 2386.99 - lr: 0.000004 - momentum: 0.000000
467
+ 2023-10-25 08:24:50,211 epoch 9 - iter 1800/1809 - loss 0.00567494 - time (sec): 158.54 - samples/sec: 2383.99 - lr: 0.000003 - momentum: 0.000000
468
+ 2023-10-25 08:24:51,042 ----------------------------------------------------------------------------------------------------
469
+ 2023-10-25 08:24:51,043 EPOCH 9 done: loss 0.0057 - lr: 0.000003
470
+ 2023-10-25 08:24:55,799 DEV : loss 0.393858402967453 - f1-score (micro avg) 0.6654
471
+ 2023-10-25 08:24:55,821 saving best model
472
+ 2023-10-25 08:24:56,521 ----------------------------------------------------------------------------------------------------
473
+ 2023-10-25 08:25:12,728 epoch 10 - iter 180/1809 - loss 0.00196544 - time (sec): 16.21 - samples/sec: 2353.56 - lr: 0.000003 - momentum: 0.000000
474
+ 2023-10-25 08:25:28,376 epoch 10 - iter 360/1809 - loss 0.00228683 - time (sec): 31.85 - samples/sec: 2391.48 - lr: 0.000003 - momentum: 0.000000
475
+ 2023-10-25 08:25:44,475 epoch 10 - iter 540/1809 - loss 0.00299234 - time (sec): 47.95 - samples/sec: 2361.65 - lr: 0.000002 - momentum: 0.000000
476
+ 2023-10-25 08:26:00,434 epoch 10 - iter 720/1809 - loss 0.00293109 - time (sec): 63.91 - samples/sec: 2370.47 - lr: 0.000002 - momentum: 0.000000
477
+ 2023-10-25 08:26:16,100 epoch 10 - iter 900/1809 - loss 0.00302326 - time (sec): 79.58 - samples/sec: 2361.79 - lr: 0.000002 - momentum: 0.000000
478
+ 2023-10-25 08:26:31,796 epoch 10 - iter 1080/1809 - loss 0.00327400 - time (sec): 95.27 - samples/sec: 2365.70 - lr: 0.000001 - momentum: 0.000000
479
+ 2023-10-25 08:26:47,735 epoch 10 - iter 1260/1809 - loss 0.00338707 - time (sec): 111.21 - samples/sec: 2357.01 - lr: 0.000001 - momentum: 0.000000
480
+ 2023-10-25 08:27:03,951 epoch 10 - iter 1440/1809 - loss 0.00361125 - time (sec): 127.43 - samples/sec: 2361.94 - lr: 0.000001 - momentum: 0.000000
481
+ 2023-10-25 08:27:20,042 epoch 10 - iter 1620/1809 - loss 0.00365904 - time (sec): 143.52 - samples/sec: 2367.04 - lr: 0.000000 - momentum: 0.000000
482
+ 2023-10-25 08:27:36,103 epoch 10 - iter 1800/1809 - loss 0.00356670 - time (sec): 159.58 - samples/sec: 2371.48 - lr: 0.000000 - momentum: 0.000000
483
+ 2023-10-25 08:27:36,804 ----------------------------------------------------------------------------------------------------
484
+ 2023-10-25 08:27:36,804 EPOCH 10 done: loss 0.0036 - lr: 0.000000
485
+ 2023-10-25 08:27:41,566 DEV : loss 0.40507274866104126 - f1-score (micro avg) 0.6612
486
+ 2023-10-25 08:27:42,142 ----------------------------------------------------------------------------------------------------
487
+ 2023-10-25 08:27:42,143 Loading model from best epoch ...
488
+ 2023-10-25 08:27:44,091 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
489
+ 2023-10-25 08:27:50,312
490
+ Results:
491
+ - F-score (micro) 0.6545
492
+ - F-score (macro) 0.5095
493
+ - Accuracy 0.4987
494
+
495
+ By class:
496
+ precision recall f1-score support
497
+
498
+ loc 0.6376 0.7919 0.7064 591
499
+ pers 0.5787 0.7619 0.6578 357
500
+ org 0.1791 0.1519 0.1644 79
501
+
502
+ micro avg 0.5917 0.7322 0.6545 1027
503
+ macro avg 0.4651 0.5686 0.5095 1027
504
+ weighted avg 0.5819 0.7322 0.6478 1027
505
+
506
+ 2023-10-25 08:27:50,312 ----------------------------------------------------------------------------------------------------