Upload ./training.log with huggingface_hub
Browse files- training.log +508 -0
training.log
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-23 19:29:49,570 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-23 19:29:49,571 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(64001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
(1): BertLayer(
|
39 |
+
(attention): BertAttention(
|
40 |
+
(self): BertSelfAttention(
|
41 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
43 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
44 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
45 |
+
)
|
46 |
+
(output): BertSelfOutput(
|
47 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
48 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
50 |
+
)
|
51 |
+
)
|
52 |
+
(intermediate): BertIntermediate(
|
53 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
54 |
+
(intermediate_act_fn): GELUActivation()
|
55 |
+
)
|
56 |
+
(output): BertOutput(
|
57 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
58 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
)
|
61 |
+
)
|
62 |
+
(2): BertLayer(
|
63 |
+
(attention): BertAttention(
|
64 |
+
(self): BertSelfAttention(
|
65 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
66 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
67 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
68 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
69 |
+
)
|
70 |
+
(output): BertSelfOutput(
|
71 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
72 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
74 |
+
)
|
75 |
+
)
|
76 |
+
(intermediate): BertIntermediate(
|
77 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
78 |
+
(intermediate_act_fn): GELUActivation()
|
79 |
+
)
|
80 |
+
(output): BertOutput(
|
81 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
82 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
)
|
86 |
+
(3): BertLayer(
|
87 |
+
(attention): BertAttention(
|
88 |
+
(self): BertSelfAttention(
|
89 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
90 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
91 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
92 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
93 |
+
)
|
94 |
+
(output): BertSelfOutput(
|
95 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(intermediate): BertIntermediate(
|
101 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
102 |
+
(intermediate_act_fn): GELUActivation()
|
103 |
+
)
|
104 |
+
(output): BertOutput(
|
105 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
106 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
(4): BertLayer(
|
111 |
+
(attention): BertAttention(
|
112 |
+
(self): BertSelfAttention(
|
113 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
114 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
115 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
116 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
117 |
+
)
|
118 |
+
(output): BertSelfOutput(
|
119 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
120 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
122 |
+
)
|
123 |
+
)
|
124 |
+
(intermediate): BertIntermediate(
|
125 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
126 |
+
(intermediate_act_fn): GELUActivation()
|
127 |
+
)
|
128 |
+
(output): BertOutput(
|
129 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
130 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
)
|
133 |
+
)
|
134 |
+
(5): BertLayer(
|
135 |
+
(attention): BertAttention(
|
136 |
+
(self): BertSelfAttention(
|
137 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
138 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
139 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
(output): BertSelfOutput(
|
143 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
144 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
146 |
+
)
|
147 |
+
)
|
148 |
+
(intermediate): BertIntermediate(
|
149 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
150 |
+
(intermediate_act_fn): GELUActivation()
|
151 |
+
)
|
152 |
+
(output): BertOutput(
|
153 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
154 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
(6): BertLayer(
|
159 |
+
(attention): BertAttention(
|
160 |
+
(self): BertSelfAttention(
|
161 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
162 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
163 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
164 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
165 |
+
)
|
166 |
+
(output): BertSelfOutput(
|
167 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
168 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
170 |
+
)
|
171 |
+
)
|
172 |
+
(intermediate): BertIntermediate(
|
173 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
174 |
+
(intermediate_act_fn): GELUActivation()
|
175 |
+
)
|
176 |
+
(output): BertOutput(
|
177 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
178 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
179 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
180 |
+
)
|
181 |
+
)
|
182 |
+
(7): BertLayer(
|
183 |
+
(attention): BertAttention(
|
184 |
+
(self): BertSelfAttention(
|
185 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
186 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
187 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
188 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
189 |
+
)
|
190 |
+
(output): BertSelfOutput(
|
191 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
192 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
193 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
(intermediate): BertIntermediate(
|
197 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
198 |
+
(intermediate_act_fn): GELUActivation()
|
199 |
+
)
|
200 |
+
(output): BertOutput(
|
201 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(8): BertLayer(
|
207 |
+
(attention): BertAttention(
|
208 |
+
(self): BertSelfAttention(
|
209 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
210 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
211 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
(output): BertSelfOutput(
|
215 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
216 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
217 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
218 |
+
)
|
219 |
+
)
|
220 |
+
(intermediate): BertIntermediate(
|
221 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
222 |
+
(intermediate_act_fn): GELUActivation()
|
223 |
+
)
|
224 |
+
(output): BertOutput(
|
225 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
226 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
)
|
230 |
+
(9): BertLayer(
|
231 |
+
(attention): BertAttention(
|
232 |
+
(self): BertSelfAttention(
|
233 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
234 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
235 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
236 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
237 |
+
)
|
238 |
+
(output): BertSelfOutput(
|
239 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(intermediate): BertIntermediate(
|
245 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
246 |
+
(intermediate_act_fn): GELUActivation()
|
247 |
+
)
|
248 |
+
(output): BertOutput(
|
249 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
250 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
251 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
252 |
+
)
|
253 |
+
)
|
254 |
+
(10): BertLayer(
|
255 |
+
(attention): BertAttention(
|
256 |
+
(self): BertSelfAttention(
|
257 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
258 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
259 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
260 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
261 |
+
)
|
262 |
+
(output): BertSelfOutput(
|
263 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
264 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
265 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
266 |
+
)
|
267 |
+
)
|
268 |
+
(intermediate): BertIntermediate(
|
269 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
270 |
+
(intermediate_act_fn): GELUActivation()
|
271 |
+
)
|
272 |
+
(output): BertOutput(
|
273 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
274 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
275 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
(11): BertLayer(
|
279 |
+
(attention): BertAttention(
|
280 |
+
(self): BertSelfAttention(
|
281 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
282 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
283 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
284 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
285 |
+
)
|
286 |
+
(output): BertSelfOutput(
|
287 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
289 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(intermediate): BertIntermediate(
|
293 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
294 |
+
(intermediate_act_fn): GELUActivation()
|
295 |
+
)
|
296 |
+
(output): BertOutput(
|
297 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
298 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
299 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
300 |
+
)
|
301 |
+
)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(pooler): BertPooler(
|
305 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
306 |
+
(activation): Tanh()
|
307 |
+
)
|
308 |
+
)
|
309 |
+
)
|
310 |
+
(locked_dropout): LockedDropout(p=0.5)
|
311 |
+
(linear): Linear(in_features=768, out_features=25, bias=True)
|
312 |
+
(loss_function): CrossEntropyLoss()
|
313 |
+
)"
|
314 |
+
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
|
315 |
+
2023-10-23 19:29:49,571 MultiCorpus: 966 train + 219 dev + 204 test sentences
|
316 |
+
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
|
317 |
+
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
|
318 |
+
2023-10-23 19:29:49,571 Train: 966 sentences
|
319 |
+
2023-10-23 19:29:49,571 (train_with_dev=False, train_with_test=False)
|
320 |
+
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
|
321 |
+
2023-10-23 19:29:49,571 Training Params:
|
322 |
+
2023-10-23 19:29:49,571 - learning_rate: "3e-05"
|
323 |
+
2023-10-23 19:29:49,571 - mini_batch_size: "4"
|
324 |
+
2023-10-23 19:29:49,571 - max_epochs: "10"
|
325 |
+
2023-10-23 19:29:49,571 - shuffle: "True"
|
326 |
+
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
|
327 |
+
2023-10-23 19:29:49,571 Plugins:
|
328 |
+
2023-10-23 19:29:49,571 - TensorboardLogger
|
329 |
+
2023-10-23 19:29:49,571 - LinearScheduler | warmup_fraction: '0.1'
|
330 |
+
2023-10-23 19:29:49,571 ----------------------------------------------------------------------------------------------------
|
331 |
+
2023-10-23 19:29:49,572 Final evaluation on model from best epoch (best-model.pt)
|
332 |
+
2023-10-23 19:29:49,572 - metric: "('micro avg', 'f1-score')"
|
333 |
+
2023-10-23 19:29:49,572 ----------------------------------------------------------------------------------------------------
|
334 |
+
2023-10-23 19:29:49,572 Computation:
|
335 |
+
2023-10-23 19:29:49,572 - compute on device: cuda:0
|
336 |
+
2023-10-23 19:29:49,572 - embedding storage: none
|
337 |
+
2023-10-23 19:29:49,572 ----------------------------------------------------------------------------------------------------
|
338 |
+
2023-10-23 19:29:49,572 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
339 |
+
2023-10-23 19:29:49,572 ----------------------------------------------------------------------------------------------------
|
340 |
+
2023-10-23 19:29:49,572 ----------------------------------------------------------------------------------------------------
|
341 |
+
2023-10-23 19:29:49,572 Logging anything other than scalars to TensorBoard is currently not supported.
|
342 |
+
2023-10-23 19:29:51,021 epoch 1 - iter 24/242 - loss 2.98287844 - time (sec): 1.45 - samples/sec: 1489.27 - lr: 0.000003 - momentum: 0.000000
|
343 |
+
2023-10-23 19:29:52,539 epoch 1 - iter 48/242 - loss 2.26117522 - time (sec): 2.97 - samples/sec: 1617.92 - lr: 0.000006 - momentum: 0.000000
|
344 |
+
2023-10-23 19:29:54,030 epoch 1 - iter 72/242 - loss 1.76926638 - time (sec): 4.46 - samples/sec: 1573.78 - lr: 0.000009 - momentum: 0.000000
|
345 |
+
2023-10-23 19:29:55,538 epoch 1 - iter 96/242 - loss 1.46345492 - time (sec): 5.97 - samples/sec: 1585.41 - lr: 0.000012 - momentum: 0.000000
|
346 |
+
2023-10-23 19:29:57,026 epoch 1 - iter 120/242 - loss 1.25478029 - time (sec): 7.45 - samples/sec: 1587.11 - lr: 0.000015 - momentum: 0.000000
|
347 |
+
2023-10-23 19:29:58,565 epoch 1 - iter 144/242 - loss 1.09074253 - time (sec): 8.99 - samples/sec: 1608.26 - lr: 0.000018 - momentum: 0.000000
|
348 |
+
2023-10-23 19:30:00,155 epoch 1 - iter 168/242 - loss 0.98154842 - time (sec): 10.58 - samples/sec: 1618.75 - lr: 0.000021 - momentum: 0.000000
|
349 |
+
2023-10-23 19:30:01,639 epoch 1 - iter 192/242 - loss 0.89632668 - time (sec): 12.07 - samples/sec: 1618.33 - lr: 0.000024 - momentum: 0.000000
|
350 |
+
2023-10-23 19:30:03,136 epoch 1 - iter 216/242 - loss 0.82169295 - time (sec): 13.56 - samples/sec: 1612.00 - lr: 0.000027 - momentum: 0.000000
|
351 |
+
2023-10-23 19:30:04,692 epoch 1 - iter 240/242 - loss 0.75910623 - time (sec): 15.12 - samples/sec: 1620.78 - lr: 0.000030 - momentum: 0.000000
|
352 |
+
2023-10-23 19:30:04,820 ----------------------------------------------------------------------------------------------------
|
353 |
+
2023-10-23 19:30:04,820 EPOCH 1 done: loss 0.7531 - lr: 0.000030
|
354 |
+
2023-10-23 19:30:05,632 DEV : loss 0.1827384978532791 - f1-score (micro avg) 0.6213
|
355 |
+
2023-10-23 19:30:05,636 saving best model
|
356 |
+
2023-10-23 19:30:06,104 ----------------------------------------------------------------------------------------------------
|
357 |
+
2023-10-23 19:30:07,610 epoch 2 - iter 24/242 - loss 0.13604524 - time (sec): 1.51 - samples/sec: 1685.70 - lr: 0.000030 - momentum: 0.000000
|
358 |
+
2023-10-23 19:30:09,092 epoch 2 - iter 48/242 - loss 0.16051416 - time (sec): 2.99 - samples/sec: 1606.50 - lr: 0.000029 - momentum: 0.000000
|
359 |
+
2023-10-23 19:30:10,571 epoch 2 - iter 72/242 - loss 0.16266687 - time (sec): 4.47 - samples/sec: 1587.93 - lr: 0.000029 - momentum: 0.000000
|
360 |
+
2023-10-23 19:30:12,084 epoch 2 - iter 96/242 - loss 0.16915945 - time (sec): 5.98 - samples/sec: 1586.67 - lr: 0.000029 - momentum: 0.000000
|
361 |
+
2023-10-23 19:30:13,664 epoch 2 - iter 120/242 - loss 0.16054725 - time (sec): 7.56 - samples/sec: 1614.35 - lr: 0.000028 - momentum: 0.000000
|
362 |
+
2023-10-23 19:30:15,218 epoch 2 - iter 144/242 - loss 0.15751912 - time (sec): 9.11 - samples/sec: 1619.90 - lr: 0.000028 - momentum: 0.000000
|
363 |
+
2023-10-23 19:30:16,764 epoch 2 - iter 168/242 - loss 0.15934129 - time (sec): 10.66 - samples/sec: 1625.26 - lr: 0.000028 - momentum: 0.000000
|
364 |
+
2023-10-23 19:30:18,272 epoch 2 - iter 192/242 - loss 0.15641142 - time (sec): 12.17 - samples/sec: 1617.13 - lr: 0.000027 - momentum: 0.000000
|
365 |
+
2023-10-23 19:30:19,801 epoch 2 - iter 216/242 - loss 0.15506669 - time (sec): 13.70 - samples/sec: 1623.99 - lr: 0.000027 - momentum: 0.000000
|
366 |
+
2023-10-23 19:30:21,317 epoch 2 - iter 240/242 - loss 0.15220355 - time (sec): 15.21 - samples/sec: 1617.97 - lr: 0.000027 - momentum: 0.000000
|
367 |
+
2023-10-23 19:30:21,431 ----------------------------------------------------------------------------------------------------
|
368 |
+
2023-10-23 19:30:21,431 EPOCH 2 done: loss 0.1516 - lr: 0.000027
|
369 |
+
2023-10-23 19:30:22,122 DEV : loss 0.12770959734916687 - f1-score (micro avg) 0.7935
|
370 |
+
2023-10-23 19:30:22,125 saving best model
|
371 |
+
2023-10-23 19:30:22,824 ----------------------------------------------------------------------------------------------------
|
372 |
+
2023-10-23 19:30:24,302 epoch 3 - iter 24/242 - loss 0.12719161 - time (sec): 1.48 - samples/sec: 1577.87 - lr: 0.000026 - momentum: 0.000000
|
373 |
+
2023-10-23 19:30:25,824 epoch 3 - iter 48/242 - loss 0.11257977 - time (sec): 3.00 - samples/sec: 1578.28 - lr: 0.000026 - momentum: 0.000000
|
374 |
+
2023-10-23 19:30:27,346 epoch 3 - iter 72/242 - loss 0.11151491 - time (sec): 4.52 - samples/sec: 1628.09 - lr: 0.000026 - momentum: 0.000000
|
375 |
+
2023-10-23 19:30:28,909 epoch 3 - iter 96/242 - loss 0.10559088 - time (sec): 6.08 - samples/sec: 1644.85 - lr: 0.000025 - momentum: 0.000000
|
376 |
+
2023-10-23 19:30:30,427 epoch 3 - iter 120/242 - loss 0.09317932 - time (sec): 7.60 - samples/sec: 1671.53 - lr: 0.000025 - momentum: 0.000000
|
377 |
+
2023-10-23 19:30:31,909 epoch 3 - iter 144/242 - loss 0.09460460 - time (sec): 9.08 - samples/sec: 1652.42 - lr: 0.000025 - momentum: 0.000000
|
378 |
+
2023-10-23 19:30:33,459 epoch 3 - iter 168/242 - loss 0.09435856 - time (sec): 10.63 - samples/sec: 1643.72 - lr: 0.000024 - momentum: 0.000000
|
379 |
+
2023-10-23 19:30:34,949 epoch 3 - iter 192/242 - loss 0.09314101 - time (sec): 12.12 - samples/sec: 1621.29 - lr: 0.000024 - momentum: 0.000000
|
380 |
+
2023-10-23 19:30:36,529 epoch 3 - iter 216/242 - loss 0.10155585 - time (sec): 13.70 - samples/sec: 1619.78 - lr: 0.000024 - momentum: 0.000000
|
381 |
+
2023-10-23 19:30:38,045 epoch 3 - iter 240/242 - loss 0.09838725 - time (sec): 15.22 - samples/sec: 1619.20 - lr: 0.000023 - momentum: 0.000000
|
382 |
+
2023-10-23 19:30:38,158 ----------------------------------------------------------------------------------------------------
|
383 |
+
2023-10-23 19:30:38,159 EPOCH 3 done: loss 0.0980 - lr: 0.000023
|
384 |
+
2023-10-23 19:30:38,852 DEV : loss 0.1285228729248047 - f1-score (micro avg) 0.8362
|
385 |
+
2023-10-23 19:30:38,856 saving best model
|
386 |
+
2023-10-23 19:30:39,547 ----------------------------------------------------------------------------------------------------
|
387 |
+
2023-10-23 19:30:41,015 epoch 4 - iter 24/242 - loss 0.04685614 - time (sec): 1.47 - samples/sec: 1580.95 - lr: 0.000023 - momentum: 0.000000
|
388 |
+
2023-10-23 19:30:42,569 epoch 4 - iter 48/242 - loss 0.08110896 - time (sec): 3.02 - samples/sec: 1600.25 - lr: 0.000023 - momentum: 0.000000
|
389 |
+
2023-10-23 19:30:44,072 epoch 4 - iter 72/242 - loss 0.07997580 - time (sec): 4.52 - samples/sec: 1640.82 - lr: 0.000022 - momentum: 0.000000
|
390 |
+
2023-10-23 19:30:45,644 epoch 4 - iter 96/242 - loss 0.07417430 - time (sec): 6.10 - samples/sec: 1628.90 - lr: 0.000022 - momentum: 0.000000
|
391 |
+
2023-10-23 19:30:47,137 epoch 4 - iter 120/242 - loss 0.06583957 - time (sec): 7.59 - samples/sec: 1608.25 - lr: 0.000022 - momentum: 0.000000
|
392 |
+
2023-10-23 19:30:48,700 epoch 4 - iter 144/242 - loss 0.06891605 - time (sec): 9.15 - samples/sec: 1633.63 - lr: 0.000021 - momentum: 0.000000
|
393 |
+
2023-10-23 19:30:50,232 epoch 4 - iter 168/242 - loss 0.06741911 - time (sec): 10.68 - samples/sec: 1628.92 - lr: 0.000021 - momentum: 0.000000
|
394 |
+
2023-10-23 19:30:51,785 epoch 4 - iter 192/242 - loss 0.06826652 - time (sec): 12.24 - samples/sec: 1620.78 - lr: 0.000021 - momentum: 0.000000
|
395 |
+
2023-10-23 19:30:53,271 epoch 4 - iter 216/242 - loss 0.06909254 - time (sec): 13.72 - samples/sec: 1608.79 - lr: 0.000020 - momentum: 0.000000
|
396 |
+
2023-10-23 19:30:54,785 epoch 4 - iter 240/242 - loss 0.06791650 - time (sec): 15.24 - samples/sec: 1612.41 - lr: 0.000020 - momentum: 0.000000
|
397 |
+
2023-10-23 19:30:54,901 ----------------------------------------------------------------------------------------------------
|
398 |
+
2023-10-23 19:30:54,902 EPOCH 4 done: loss 0.0675 - lr: 0.000020
|
399 |
+
2023-10-23 19:30:55,598 DEV : loss 0.16268931329250336 - f1-score (micro avg) 0.8259
|
400 |
+
2023-10-23 19:30:55,602 ----------------------------------------------------------------------------------------------------
|
401 |
+
2023-10-23 19:30:57,140 epoch 5 - iter 24/242 - loss 0.05705890 - time (sec): 1.54 - samples/sec: 1606.57 - lr: 0.000020 - momentum: 0.000000
|
402 |
+
2023-10-23 19:30:58,668 epoch 5 - iter 48/242 - loss 0.05415032 - time (sec): 3.07 - samples/sec: 1623.01 - lr: 0.000019 - momentum: 0.000000
|
403 |
+
2023-10-23 19:31:00,159 epoch 5 - iter 72/242 - loss 0.05768220 - time (sec): 4.56 - samples/sec: 1624.60 - lr: 0.000019 - momentum: 0.000000
|
404 |
+
2023-10-23 19:31:01,659 epoch 5 - iter 96/242 - loss 0.05428573 - time (sec): 6.06 - samples/sec: 1634.34 - lr: 0.000019 - momentum: 0.000000
|
405 |
+
2023-10-23 19:31:03,167 epoch 5 - iter 120/242 - loss 0.05240841 - time (sec): 7.56 - samples/sec: 1637.80 - lr: 0.000018 - momentum: 0.000000
|
406 |
+
2023-10-23 19:31:04,711 epoch 5 - iter 144/242 - loss 0.04914866 - time (sec): 9.11 - samples/sec: 1636.15 - lr: 0.000018 - momentum: 0.000000
|
407 |
+
2023-10-23 19:31:06,237 epoch 5 - iter 168/242 - loss 0.04959201 - time (sec): 10.64 - samples/sec: 1630.73 - lr: 0.000018 - momentum: 0.000000
|
408 |
+
2023-10-23 19:31:07,753 epoch 5 - iter 192/242 - loss 0.04995992 - time (sec): 12.15 - samples/sec: 1605.06 - lr: 0.000017 - momentum: 0.000000
|
409 |
+
2023-10-23 19:31:09,284 epoch 5 - iter 216/242 - loss 0.04891403 - time (sec): 13.68 - samples/sec: 1612.94 - lr: 0.000017 - momentum: 0.000000
|
410 |
+
2023-10-23 19:31:10,852 epoch 5 - iter 240/242 - loss 0.04560757 - time (sec): 15.25 - samples/sec: 1615.49 - lr: 0.000017 - momentum: 0.000000
|
411 |
+
2023-10-23 19:31:10,962 ----------------------------------------------------------------------------------------------------
|
412 |
+
2023-10-23 19:31:10,962 EPOCH 5 done: loss 0.0457 - lr: 0.000017
|
413 |
+
2023-10-23 19:31:11,659 DEV : loss 0.1693263053894043 - f1-score (micro avg) 0.8425
|
414 |
+
2023-10-23 19:31:11,663 saving best model
|
415 |
+
2023-10-23 19:31:12,458 ----------------------------------------------------------------------------------------------------
|
416 |
+
2023-10-23 19:31:13,964 epoch 6 - iter 24/242 - loss 0.00754029 - time (sec): 1.50 - samples/sec: 1492.40 - lr: 0.000016 - momentum: 0.000000
|
417 |
+
2023-10-23 19:31:15,436 epoch 6 - iter 48/242 - loss 0.02913193 - time (sec): 2.98 - samples/sec: 1546.80 - lr: 0.000016 - momentum: 0.000000
|
418 |
+
2023-10-23 19:31:16,992 epoch 6 - iter 72/242 - loss 0.03202316 - time (sec): 4.53 - samples/sec: 1616.66 - lr: 0.000016 - momentum: 0.000000
|
419 |
+
2023-10-23 19:31:18,538 epoch 6 - iter 96/242 - loss 0.03013955 - time (sec): 6.08 - samples/sec: 1599.96 - lr: 0.000015 - momentum: 0.000000
|
420 |
+
2023-10-23 19:31:20,088 epoch 6 - iter 120/242 - loss 0.03080415 - time (sec): 7.63 - samples/sec: 1645.91 - lr: 0.000015 - momentum: 0.000000
|
421 |
+
2023-10-23 19:31:21,638 epoch 6 - iter 144/242 - loss 0.03003144 - time (sec): 9.18 - samples/sec: 1655.31 - lr: 0.000015 - momentum: 0.000000
|
422 |
+
2023-10-23 19:31:23,126 epoch 6 - iter 168/242 - loss 0.03283920 - time (sec): 10.67 - samples/sec: 1630.94 - lr: 0.000014 - momentum: 0.000000
|
423 |
+
2023-10-23 19:31:24,642 epoch 6 - iter 192/242 - loss 0.03395577 - time (sec): 12.18 - samples/sec: 1627.18 - lr: 0.000014 - momentum: 0.000000
|
424 |
+
2023-10-23 19:31:26,111 epoch 6 - iter 216/242 - loss 0.03345099 - time (sec): 13.65 - samples/sec: 1613.56 - lr: 0.000014 - momentum: 0.000000
|
425 |
+
2023-10-23 19:31:27,662 epoch 6 - iter 240/242 - loss 0.03181677 - time (sec): 15.20 - samples/sec: 1615.60 - lr: 0.000013 - momentum: 0.000000
|
426 |
+
2023-10-23 19:31:27,785 ----------------------------------------------------------------------------------------------------
|
427 |
+
2023-10-23 19:31:27,786 EPOCH 6 done: loss 0.0322 - lr: 0.000013
|
428 |
+
2023-10-23 19:31:28,484 DEV : loss 0.1637829840183258 - f1-score (micro avg) 0.8688
|
429 |
+
2023-10-23 19:31:28,488 saving best model
|
430 |
+
2023-10-23 19:31:29,085 ----------------------------------------------------------------------------------------------------
|
431 |
+
2023-10-23 19:31:30,628 epoch 7 - iter 24/242 - loss 0.01992873 - time (sec): 1.54 - samples/sec: 1671.67 - lr: 0.000013 - momentum: 0.000000
|
432 |
+
2023-10-23 19:31:32,109 epoch 7 - iter 48/242 - loss 0.01958366 - time (sec): 3.02 - samples/sec: 1562.88 - lr: 0.000013 - momentum: 0.000000
|
433 |
+
2023-10-23 19:31:33,628 epoch 7 - iter 72/242 - loss 0.02160298 - time (sec): 4.54 - samples/sec: 1544.62 - lr: 0.000012 - momentum: 0.000000
|
434 |
+
2023-10-23 19:31:35,152 epoch 7 - iter 96/242 - loss 0.03093927 - time (sec): 6.07 - samples/sec: 1567.90 - lr: 0.000012 - momentum: 0.000000
|
435 |
+
2023-10-23 19:31:36,645 epoch 7 - iter 120/242 - loss 0.02876334 - time (sec): 7.56 - samples/sec: 1534.47 - lr: 0.000012 - momentum: 0.000000
|
436 |
+
2023-10-23 19:31:38,197 epoch 7 - iter 144/242 - loss 0.02510561 - time (sec): 9.11 - samples/sec: 1585.38 - lr: 0.000011 - momentum: 0.000000
|
437 |
+
2023-10-23 19:31:39,738 epoch 7 - iter 168/242 - loss 0.02481182 - time (sec): 10.65 - samples/sec: 1606.81 - lr: 0.000011 - momentum: 0.000000
|
438 |
+
2023-10-23 19:31:41,220 epoch 7 - iter 192/242 - loss 0.02407380 - time (sec): 12.13 - samples/sec: 1599.71 - lr: 0.000011 - momentum: 0.000000
|
439 |
+
2023-10-23 19:31:42,729 epoch 7 - iter 216/242 - loss 0.02445811 - time (sec): 13.64 - samples/sec: 1601.31 - lr: 0.000010 - momentum: 0.000000
|
440 |
+
2023-10-23 19:31:44,297 epoch 7 - iter 240/242 - loss 0.02432614 - time (sec): 15.21 - samples/sec: 1611.23 - lr: 0.000010 - momentum: 0.000000
|
441 |
+
2023-10-23 19:31:44,421 ----------------------------------------------------------------------------------------------------
|
442 |
+
2023-10-23 19:31:44,422 EPOCH 7 done: loss 0.0241 - lr: 0.000010
|
443 |
+
2023-10-23 19:31:45,119 DEV : loss 0.17772217094898224 - f1-score (micro avg) 0.86
|
444 |
+
2023-10-23 19:31:45,122 ----------------------------------------------------------------------------------------------------
|
445 |
+
2023-10-23 19:31:46,627 epoch 8 - iter 24/242 - loss 0.03288147 - time (sec): 1.50 - samples/sec: 1679.19 - lr: 0.000010 - momentum: 0.000000
|
446 |
+
2023-10-23 19:31:48,138 epoch 8 - iter 48/242 - loss 0.01853878 - time (sec): 3.01 - samples/sec: 1642.54 - lr: 0.000009 - momentum: 0.000000
|
447 |
+
2023-10-23 19:31:49,644 epoch 8 - iter 72/242 - loss 0.01634984 - time (sec): 4.52 - samples/sec: 1632.94 - lr: 0.000009 - momentum: 0.000000
|
448 |
+
2023-10-23 19:31:51,166 epoch 8 - iter 96/242 - loss 0.01817815 - time (sec): 6.04 - samples/sec: 1617.32 - lr: 0.000009 - momentum: 0.000000
|
449 |
+
2023-10-23 19:31:52,747 epoch 8 - iter 120/242 - loss 0.02189944 - time (sec): 7.62 - samples/sec: 1621.72 - lr: 0.000008 - momentum: 0.000000
|
450 |
+
2023-10-23 19:31:54,346 epoch 8 - iter 144/242 - loss 0.01859034 - time (sec): 9.22 - samples/sec: 1630.24 - lr: 0.000008 - momentum: 0.000000
|
451 |
+
2023-10-23 19:31:55,804 epoch 8 - iter 168/242 - loss 0.02102774 - time (sec): 10.68 - samples/sec: 1616.58 - lr: 0.000008 - momentum: 0.000000
|
452 |
+
2023-10-23 19:31:57,342 epoch 8 - iter 192/242 - loss 0.01985651 - time (sec): 12.22 - samples/sec: 1609.44 - lr: 0.000007 - momentum: 0.000000
|
453 |
+
2023-10-23 19:31:58,848 epoch 8 - iter 216/242 - loss 0.01865202 - time (sec): 13.73 - samples/sec: 1609.88 - lr: 0.000007 - momentum: 0.000000
|
454 |
+
2023-10-23 19:32:00,386 epoch 8 - iter 240/242 - loss 0.01800372 - time (sec): 15.26 - samples/sec: 1606.30 - lr: 0.000007 - momentum: 0.000000
|
455 |
+
2023-10-23 19:32:00,506 ----------------------------------------------------------------------------------------------------
|
456 |
+
2023-10-23 19:32:00,507 EPOCH 8 done: loss 0.0178 - lr: 0.000007
|
457 |
+
2023-10-23 19:32:01,209 DEV : loss 0.194981187582016 - f1-score (micro avg) 0.8373
|
458 |
+
2023-10-23 19:32:01,213 ----------------------------------------------------------------------------------------------------
|
459 |
+
2023-10-23 19:32:02,754 epoch 9 - iter 24/242 - loss 0.02859587 - time (sec): 1.54 - samples/sec: 1628.93 - lr: 0.000006 - momentum: 0.000000
|
460 |
+
2023-10-23 19:32:04,317 epoch 9 - iter 48/242 - loss 0.02766799 - time (sec): 3.10 - samples/sec: 1579.06 - lr: 0.000006 - momentum: 0.000000
|
461 |
+
2023-10-23 19:32:05,850 epoch 9 - iter 72/242 - loss 0.02277408 - time (sec): 4.64 - samples/sec: 1589.03 - lr: 0.000006 - momentum: 0.000000
|
462 |
+
2023-10-23 19:32:07,389 epoch 9 - iter 96/242 - loss 0.01930538 - time (sec): 6.18 - samples/sec: 1617.33 - lr: 0.000005 - momentum: 0.000000
|
463 |
+
2023-10-23 19:32:08,917 epoch 9 - iter 120/242 - loss 0.01681611 - time (sec): 7.70 - samples/sec: 1623.29 - lr: 0.000005 - momentum: 0.000000
|
464 |
+
2023-10-23 19:32:10,404 epoch 9 - iter 144/242 - loss 0.01500288 - time (sec): 9.19 - samples/sec: 1618.61 - lr: 0.000005 - momentum: 0.000000
|
465 |
+
2023-10-23 19:32:11,935 epoch 9 - iter 168/242 - loss 0.01351396 - time (sec): 10.72 - samples/sec: 1600.59 - lr: 0.000004 - momentum: 0.000000
|
466 |
+
2023-10-23 19:32:13,428 epoch 9 - iter 192/242 - loss 0.01220532 - time (sec): 12.21 - samples/sec: 1592.90 - lr: 0.000004 - momentum: 0.000000
|
467 |
+
2023-10-23 19:32:14,944 epoch 9 - iter 216/242 - loss 0.01149296 - time (sec): 13.73 - samples/sec: 1606.89 - lr: 0.000004 - momentum: 0.000000
|
468 |
+
2023-10-23 19:32:16,481 epoch 9 - iter 240/242 - loss 0.01091838 - time (sec): 15.27 - samples/sec: 1613.65 - lr: 0.000003 - momentum: 0.000000
|
469 |
+
2023-10-23 19:32:16,595 ----------------------------------------------------------------------------------------------------
|
470 |
+
2023-10-23 19:32:16,596 EPOCH 9 done: loss 0.0109 - lr: 0.000003
|
471 |
+
2023-10-23 19:32:17,294 DEV : loss 0.1826126128435135 - f1-score (micro avg) 0.8607
|
472 |
+
2023-10-23 19:32:17,298 ----------------------------------------------------------------------------------------------------
|
473 |
+
2023-10-23 19:32:18,855 epoch 10 - iter 24/242 - loss 0.01137724 - time (sec): 1.56 - samples/sec: 1703.46 - lr: 0.000003 - momentum: 0.000000
|
474 |
+
2023-10-23 19:32:20,347 epoch 10 - iter 48/242 - loss 0.00797534 - time (sec): 3.05 - samples/sec: 1654.01 - lr: 0.000003 - momentum: 0.000000
|
475 |
+
2023-10-23 19:32:21,927 epoch 10 - iter 72/242 - loss 0.00713636 - time (sec): 4.63 - samples/sec: 1662.10 - lr: 0.000002 - momentum: 0.000000
|
476 |
+
2023-10-23 19:32:23,402 epoch 10 - iter 96/242 - loss 0.00601590 - time (sec): 6.10 - samples/sec: 1594.00 - lr: 0.000002 - momentum: 0.000000
|
477 |
+
2023-10-23 19:32:24,907 epoch 10 - iter 120/242 - loss 0.00677766 - time (sec): 7.61 - samples/sec: 1612.58 - lr: 0.000002 - momentum: 0.000000
|
478 |
+
2023-10-23 19:32:26,407 epoch 10 - iter 144/242 - loss 0.00631534 - time (sec): 9.11 - samples/sec: 1625.46 - lr: 0.000001 - momentum: 0.000000
|
479 |
+
2023-10-23 19:32:27,926 epoch 10 - iter 168/242 - loss 0.00589143 - time (sec): 10.63 - samples/sec: 1622.92 - lr: 0.000001 - momentum: 0.000000
|
480 |
+
2023-10-23 19:32:29,420 epoch 10 - iter 192/242 - loss 0.00766039 - time (sec): 12.12 - samples/sec: 1617.90 - lr: 0.000001 - momentum: 0.000000
|
481 |
+
2023-10-23 19:32:31,004 epoch 10 - iter 216/242 - loss 0.00876882 - time (sec): 13.71 - samples/sec: 1621.94 - lr: 0.000000 - momentum: 0.000000
|
482 |
+
2023-10-23 19:32:32,544 epoch 10 - iter 240/242 - loss 0.00939067 - time (sec): 15.25 - samples/sec: 1610.64 - lr: 0.000000 - momentum: 0.000000
|
483 |
+
2023-10-23 19:32:32,664 ----------------------------------------------------------------------------------------------------
|
484 |
+
2023-10-23 19:32:32,665 EPOCH 10 done: loss 0.0093 - lr: 0.000000
|
485 |
+
2023-10-23 19:32:33,365 DEV : loss 0.18982915580272675 - f1-score (micro avg) 0.8546
|
486 |
+
2023-10-23 19:32:33,839 ----------------------------------------------------------------------------------------------------
|
487 |
+
2023-10-23 19:32:33,840 Loading model from best epoch ...
|
488 |
+
2023-10-23 19:32:35,389 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
|
489 |
+
2023-10-23 19:32:36,253
|
490 |
+
Results:
|
491 |
+
- F-score (micro) 0.8154
|
492 |
+
- F-score (macro) 0.5535
|
493 |
+
- Accuracy 0.7064
|
494 |
+
|
495 |
+
By class:
|
496 |
+
precision recall f1-score support
|
497 |
+
|
498 |
+
pers 0.8777 0.8777 0.8777 139
|
499 |
+
scope 0.8421 0.8682 0.8550 129
|
500 |
+
work 0.6593 0.7500 0.7018 80
|
501 |
+
loc 0.6667 0.2222 0.3333 9
|
502 |
+
date 0.0000 0.0000 0.0000 3
|
503 |
+
|
504 |
+
micro avg 0.8087 0.8222 0.8154 360
|
505 |
+
macro avg 0.6092 0.5436 0.5535 360
|
506 |
+
weighted avg 0.8038 0.8222 0.8095 360
|
507 |
+
|
508 |
+
2023-10-23 19:32:36,253 ----------------------------------------------------------------------------------------------------
|