hkivancoral's picture
End of training
e1e835e
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_tiny_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8768718801996672

smids_5x_deit_tiny_rms_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2381
  • Accuracy: 0.8769

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3659 1.0 375 0.3296 0.8686
0.2195 2.0 750 0.3046 0.8802
0.1328 3.0 1125 0.3414 0.8752
0.0957 4.0 1500 0.3842 0.8802
0.0592 5.0 1875 0.4781 0.8885
0.0554 6.0 2250 0.5329 0.8902
0.0561 7.0 2625 0.7030 0.8735
0.0111 8.0 3000 0.7077 0.8785
0.0138 9.0 3375 0.8845 0.8852
0.0035 10.0 3750 0.8403 0.8819
0.0539 11.0 4125 0.9586 0.8702
0.009 12.0 4500 0.9960 0.8802
0.0001 13.0 4875 1.0306 0.8719
0.0001 14.0 5250 1.0127 0.8835
0.0171 15.0 5625 1.0184 0.8885
0.0071 16.0 6000 0.9932 0.8869
0.0241 17.0 6375 1.0882 0.8752
0.0005 18.0 6750 1.0661 0.8902
0.0877 19.0 7125 1.0148 0.8785
0.0001 20.0 7500 1.0786 0.8735
0.0 21.0 7875 1.0833 0.8852
0.0 22.0 8250 1.1111 0.8785
0.0001 23.0 8625 1.2212 0.8752
0.0 24.0 9000 1.0341 0.8752
0.0 25.0 9375 1.1693 0.8752
0.0 26.0 9750 1.1184 0.8819
0.0 27.0 10125 1.0601 0.8785
0.0009 28.0 10500 1.1933 0.8702
0.0 29.0 10875 1.2058 0.8785
0.0 30.0 11250 1.1743 0.8735
0.0039 31.0 11625 1.2100 0.8785
0.0108 32.0 12000 1.2237 0.8769
0.0031 33.0 12375 1.2193 0.8735
0.0 34.0 12750 1.2009 0.8769
0.0 35.0 13125 1.1695 0.8802
0.0 36.0 13500 1.1623 0.8819
0.0 37.0 13875 1.2497 0.8702
0.0 38.0 14250 1.2770 0.8769
0.0 39.0 14625 1.2424 0.8769
0.0042 40.0 15000 1.2342 0.8819
0.0 41.0 15375 1.2571 0.8785
0.0026 42.0 15750 1.2422 0.8702
0.0032 43.0 16125 1.2321 0.8835
0.0033 44.0 16500 1.2366 0.8852
0.0026 45.0 16875 1.2353 0.8802
0.0 46.0 17250 1.2327 0.8785
0.0046 47.0 17625 1.2346 0.8785
0.0 48.0 18000 1.2359 0.8769
0.0024 49.0 18375 1.2368 0.8769
0.0026 50.0 18750 1.2381 0.8769

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2