hkivancoral's picture
End of training
01f667d
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_deit_base_adamax_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9115191986644408

smids_5x_deit_base_adamax_00001_fold1

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5548
  • Accuracy: 0.9115

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2913 1.0 376 0.3175 0.8815
0.197 2.0 752 0.2822 0.8865
0.1857 3.0 1128 0.2733 0.8915
0.0801 4.0 1504 0.2769 0.8965
0.062 5.0 1880 0.2932 0.9048
0.0559 6.0 2256 0.3199 0.9115
0.0331 7.0 2632 0.3568 0.9098
0.0024 8.0 3008 0.4098 0.8982
0.0164 9.0 3384 0.4359 0.9065
0.0004 10.0 3760 0.4455 0.9082
0.0127 11.0 4136 0.4881 0.9082
0.0001 12.0 4512 0.4919 0.9032
0.0001 13.0 4888 0.4968 0.9115
0.0037 14.0 5264 0.5278 0.9065
0.0001 15.0 5640 0.5316 0.9115
0.0001 16.0 6016 0.5363 0.9032
0.0001 17.0 6392 0.5212 0.9149
0.0001 18.0 6768 0.5353 0.9098
0.0 19.0 7144 0.5265 0.9098
0.0147 20.0 7520 0.5277 0.9115
0.0 21.0 7896 0.5565 0.9065
0.0 22.0 8272 0.5728 0.9098
0.0 23.0 8648 0.5461 0.9115
0.0 24.0 9024 0.5300 0.9065
0.0 25.0 9400 0.5373 0.9065
0.0042 26.0 9776 0.5315 0.9082
0.0 27.0 10152 0.5779 0.9065
0.0 28.0 10528 0.5457 0.9098
0.0079 29.0 10904 0.5511 0.9098
0.003 30.0 11280 0.5454 0.9048
0.0 31.0 11656 0.5479 0.9098
0.0 32.0 12032 0.5371 0.9082
0.0 33.0 12408 0.5701 0.9065
0.0 34.0 12784 0.5431 0.9032
0.0 35.0 13160 0.5470 0.9048
0.0 36.0 13536 0.5461 0.9015
0.0 37.0 13912 0.5481 0.9115
0.0 38.0 14288 0.5522 0.9098
0.0 39.0 14664 0.5539 0.9082
0.0 40.0 15040 0.5537 0.9115
0.0 41.0 15416 0.5471 0.9048
0.0 42.0 15792 0.5483 0.9115
0.0 43.0 16168 0.5497 0.9132
0.0 44.0 16544 0.5527 0.9115
0.0 45.0 16920 0.5532 0.9115
0.0053 46.0 17296 0.5512 0.9098
0.0 47.0 17672 0.5538 0.9115
0.0 48.0 18048 0.5539 0.9098
0.0 49.0 18424 0.5540 0.9115
0.0012 50.0 18800 0.5548 0.9115

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2