hkivancoral's picture
End of training
99331c3
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_5x_beit_base_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9051580698835274

smids_5x_beit_base_rms_00001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9950
  • Accuracy: 0.9052

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2499 1.0 375 0.2304 0.9185
0.1775 2.0 750 0.2550 0.9018
0.1217 3.0 1125 0.4013 0.8869
0.0433 4.0 1500 0.5189 0.8819
0.0358 5.0 1875 0.4893 0.8985
0.0375 6.0 2250 0.5725 0.9052
0.0405 7.0 2625 0.5904 0.9101
0.012 8.0 3000 0.7002 0.9018
0.0053 9.0 3375 0.7065 0.9052
0.0037 10.0 3750 0.7485 0.8985
0.0126 11.0 4125 0.7919 0.8985
0.0005 12.0 4500 0.7919 0.8968
0.0159 13.0 4875 0.8564 0.8902
0.0001 14.0 5250 0.8426 0.8852
0.0002 15.0 5625 0.8433 0.8918
0.0148 16.0 6000 0.7634 0.9018
0.0208 17.0 6375 0.8403 0.8952
0.0001 18.0 6750 0.8471 0.9018
0.0491 19.0 7125 0.8371 0.9035
0.0 20.0 7500 0.7423 0.9052
0.0126 21.0 7875 0.8759 0.8935
0.0008 22.0 8250 0.8648 0.9002
0.0 23.0 8625 0.9554 0.9002
0.0005 24.0 9000 0.9755 0.8918
0.0184 25.0 9375 0.9160 0.8918
0.0 26.0 9750 0.9691 0.8918
0.0 27.0 10125 0.8701 0.8968
0.0002 28.0 10500 0.7677 0.9035
0.0001 29.0 10875 0.9258 0.9035
0.0033 30.0 11250 0.9080 0.9002
0.0045 31.0 11625 1.0210 0.8935
0.0045 32.0 12000 0.9883 0.8985
0.0017 33.0 12375 0.8984 0.9035
0.0 34.0 12750 0.8844 0.9101
0.0007 35.0 13125 0.9085 0.8918
0.0002 36.0 13500 0.9790 0.9035
0.0 37.0 13875 1.0705 0.8985
0.0 38.0 14250 1.0172 0.9035
0.0 39.0 14625 1.0259 0.9052
0.0032 40.0 15000 1.0712 0.9018
0.0 41.0 15375 1.0107 0.9002
0.0025 42.0 15750 1.0002 0.9068
0.0023 43.0 16125 1.0032 0.9035
0.003 44.0 16500 0.9837 0.9052
0.0018 45.0 16875 1.0127 0.9035
0.0 46.0 17250 0.9843 0.9068
0.0056 47.0 17625 1.0283 0.9002
0.0033 48.0 18000 1.0135 0.9052
0.0031 49.0 18375 0.9997 0.9052
0.0025 50.0 18750 0.9950 0.9052

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2