metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_5x_beit_base_rms_00001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9051580698835274
smids_5x_beit_base_rms_00001_fold2
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9950
- Accuracy: 0.9052
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2499 | 1.0 | 375 | 0.2304 | 0.9185 |
0.1775 | 2.0 | 750 | 0.2550 | 0.9018 |
0.1217 | 3.0 | 1125 | 0.4013 | 0.8869 |
0.0433 | 4.0 | 1500 | 0.5189 | 0.8819 |
0.0358 | 5.0 | 1875 | 0.4893 | 0.8985 |
0.0375 | 6.0 | 2250 | 0.5725 | 0.9052 |
0.0405 | 7.0 | 2625 | 0.5904 | 0.9101 |
0.012 | 8.0 | 3000 | 0.7002 | 0.9018 |
0.0053 | 9.0 | 3375 | 0.7065 | 0.9052 |
0.0037 | 10.0 | 3750 | 0.7485 | 0.8985 |
0.0126 | 11.0 | 4125 | 0.7919 | 0.8985 |
0.0005 | 12.0 | 4500 | 0.7919 | 0.8968 |
0.0159 | 13.0 | 4875 | 0.8564 | 0.8902 |
0.0001 | 14.0 | 5250 | 0.8426 | 0.8852 |
0.0002 | 15.0 | 5625 | 0.8433 | 0.8918 |
0.0148 | 16.0 | 6000 | 0.7634 | 0.9018 |
0.0208 | 17.0 | 6375 | 0.8403 | 0.8952 |
0.0001 | 18.0 | 6750 | 0.8471 | 0.9018 |
0.0491 | 19.0 | 7125 | 0.8371 | 0.9035 |
0.0 | 20.0 | 7500 | 0.7423 | 0.9052 |
0.0126 | 21.0 | 7875 | 0.8759 | 0.8935 |
0.0008 | 22.0 | 8250 | 0.8648 | 0.9002 |
0.0 | 23.0 | 8625 | 0.9554 | 0.9002 |
0.0005 | 24.0 | 9000 | 0.9755 | 0.8918 |
0.0184 | 25.0 | 9375 | 0.9160 | 0.8918 |
0.0 | 26.0 | 9750 | 0.9691 | 0.8918 |
0.0 | 27.0 | 10125 | 0.8701 | 0.8968 |
0.0002 | 28.0 | 10500 | 0.7677 | 0.9035 |
0.0001 | 29.0 | 10875 | 0.9258 | 0.9035 |
0.0033 | 30.0 | 11250 | 0.9080 | 0.9002 |
0.0045 | 31.0 | 11625 | 1.0210 | 0.8935 |
0.0045 | 32.0 | 12000 | 0.9883 | 0.8985 |
0.0017 | 33.0 | 12375 | 0.8984 | 0.9035 |
0.0 | 34.0 | 12750 | 0.8844 | 0.9101 |
0.0007 | 35.0 | 13125 | 0.9085 | 0.8918 |
0.0002 | 36.0 | 13500 | 0.9790 | 0.9035 |
0.0 | 37.0 | 13875 | 1.0705 | 0.8985 |
0.0 | 38.0 | 14250 | 1.0172 | 0.9035 |
0.0 | 39.0 | 14625 | 1.0259 | 0.9052 |
0.0032 | 40.0 | 15000 | 1.0712 | 0.9018 |
0.0 | 41.0 | 15375 | 1.0107 | 0.9002 |
0.0025 | 42.0 | 15750 | 1.0002 | 0.9068 |
0.0023 | 43.0 | 16125 | 1.0032 | 0.9035 |
0.003 | 44.0 | 16500 | 0.9837 | 0.9052 |
0.0018 | 45.0 | 16875 | 1.0127 | 0.9035 |
0.0 | 46.0 | 17250 | 0.9843 | 0.9068 |
0.0056 | 47.0 | 17625 | 1.0283 | 0.9002 |
0.0033 | 48.0 | 18000 | 1.0135 | 0.9052 |
0.0031 | 49.0 | 18375 | 0.9997 | 0.9052 |
0.0025 | 50.0 | 18750 | 0.9950 | 0.9052 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2