hkivancoral's picture
End of training
f564130
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8935108153078203

smids_3x_deit_tiny_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9522
  • Accuracy: 0.8935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5261 1.0 225 0.3629 0.8552
0.3081 2.0 450 0.3850 0.8303
0.2433 3.0 675 0.4084 0.8486
0.2976 4.0 900 0.3348 0.8752
0.2892 5.0 1125 0.3154 0.8752
0.1338 6.0 1350 0.4213 0.8586
0.1811 7.0 1575 0.4568 0.8602
0.1262 8.0 1800 0.4156 0.8702
0.1405 9.0 2025 0.4962 0.8552
0.1378 10.0 2250 0.4880 0.8652
0.0783 11.0 2475 0.5529 0.8602
0.1156 12.0 2700 0.5059 0.8569
0.0435 13.0 2925 0.5510 0.8735
0.06 14.0 3150 0.5625 0.8669
0.0749 15.0 3375 0.6173 0.8719
0.0723 16.0 3600 0.5869 0.8785
0.0343 17.0 3825 0.6758 0.8852
0.0074 18.0 4050 0.7248 0.8686
0.0351 19.0 4275 0.6545 0.8785
0.0367 20.0 4500 0.7634 0.8785
0.0039 21.0 4725 0.8073 0.8752
0.0183 22.0 4950 0.6969 0.8869
0.015 23.0 5175 0.7193 0.8885
0.0003 24.0 5400 0.8406 0.8719
0.0461 25.0 5625 0.8687 0.8702
0.0004 26.0 5850 0.7424 0.8802
0.0001 27.0 6075 0.8481 0.8819
0.0001 28.0 6300 0.8060 0.8785
0.0003 29.0 6525 0.8316 0.8869
0.0012 30.0 6750 0.8183 0.8835
0.007 31.0 6975 0.7519 0.8802
0.0 32.0 7200 0.8429 0.8852
0.002 33.0 7425 0.8340 0.8885
0.0 34.0 7650 0.8626 0.8785
0.0 35.0 7875 0.8155 0.8935
0.0035 36.0 8100 0.8392 0.8918
0.0 37.0 8325 0.9154 0.8852
0.0 38.0 8550 0.9252 0.8885
0.0047 39.0 8775 0.9247 0.8852
0.0 40.0 9000 0.9286 0.8918
0.0 41.0 9225 0.9340 0.8902
0.0 42.0 9450 0.9212 0.8885
0.0 43.0 9675 0.9298 0.8902
0.0 44.0 9900 0.9334 0.8935
0.0 45.0 10125 0.9402 0.8952
0.0 46.0 10350 0.9378 0.8952
0.0 47.0 10575 0.9454 0.8918
0.0 48.0 10800 0.9493 0.8935
0.0024 49.0 11025 0.9513 0.8935
0.0024 50.0 11250 0.9522 0.8935

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2