hkivancoral's picture
End of training
8ac93a4
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_small_adamax_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.905

smids_3x_deit_small_adamax_0001_fold3

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8015
  • Accuracy: 0.905

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3198 1.0 225 0.2665 0.8883
0.2096 2.0 450 0.2570 0.9017
0.0616 3.0 675 0.3183 0.9
0.0236 4.0 900 0.4110 0.8967
0.027 5.0 1125 0.4898 0.8833
0.0024 6.0 1350 0.5169 0.895
0.0276 7.0 1575 0.7378 0.89
0.0356 8.0 1800 0.5877 0.8983
0.0219 9.0 2025 0.6725 0.8967
0.0365 10.0 2250 0.7831 0.8833
0.0245 11.0 2475 0.6640 0.9033
0.0004 12.0 2700 0.7728 0.88
0.0002 13.0 2925 0.7409 0.8917
0.0001 14.0 3150 0.6940 0.9033
0.0 15.0 3375 0.7164 0.9
0.0 16.0 3600 0.7412 0.9033
0.0 17.0 3825 0.7630 0.9017
0.0001 18.0 4050 0.7681 0.9017
0.0 19.0 4275 0.7425 0.9033
0.0 20.0 4500 0.7631 0.8967
0.0 21.0 4725 0.7304 0.9067
0.0 22.0 4950 0.7313 0.9067
0.0 23.0 5175 0.7463 0.9
0.0 24.0 5400 0.7318 0.9083
0.0047 25.0 5625 0.7438 0.905
0.0 26.0 5850 0.7500 0.905
0.0 27.0 6075 0.7544 0.905
0.0 28.0 6300 0.7484 0.905
0.0046 29.0 6525 0.7585 0.9067
0.0039 30.0 6750 0.7608 0.905
0.0038 31.0 6975 0.7603 0.9033
0.0 32.0 7200 0.7834 0.9067
0.0 33.0 7425 0.7762 0.9033
0.0 34.0 7650 0.7871 0.9033
0.0 35.0 7875 0.7831 0.9067
0.0 36.0 8100 0.7821 0.9017
0.0 37.0 8325 0.7857 0.9067
0.0 38.0 8550 0.7857 0.9017
0.0 39.0 8775 0.7870 0.9033
0.0 40.0 9000 0.7883 0.9033
0.0 41.0 9225 0.7951 0.905
0.0 42.0 9450 0.7962 0.9033
0.0 43.0 9675 0.7972 0.9033
0.0 44.0 9900 0.7957 0.9017
0.0 45.0 10125 0.7978 0.9033
0.0 46.0 10350 0.8000 0.905
0.0025 47.0 10575 0.7996 0.905
0.0 48.0 10800 0.8016 0.905
0.0 49.0 11025 0.8022 0.905
0.0 50.0 11250 0.8015 0.905

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2