hkivancoral's picture
End of training
2a2048d
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_base_adamax_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.895

smids_3x_deit_base_adamax_0001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8955
  • Accuracy: 0.895

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3014 1.0 225 0.3213 0.8717
0.0815 2.0 450 0.2900 0.8883
0.0668 3.0 675 0.4157 0.8817
0.0616 4.0 900 0.5373 0.8667
0.0313 5.0 1125 0.6762 0.8783
0.0139 6.0 1350 0.5421 0.8867
0.0228 7.0 1575 0.5956 0.885
0.0003 8.0 1800 0.6382 0.89
0.0191 9.0 2025 0.5798 0.8967
0.0066 10.0 2250 0.6950 0.8817
0.0002 11.0 2475 0.6959 0.8783
0.0105 12.0 2700 0.7866 0.8733
0.0009 13.0 2925 0.7496 0.8833
0.02 14.0 3150 0.7895 0.8917
0.0 15.0 3375 0.7885 0.8867
0.0 16.0 3600 0.8188 0.8783
0.0001 17.0 3825 0.8229 0.895
0.013 18.0 4050 0.8881 0.8867
0.008 19.0 4275 0.8377 0.8933
0.0001 20.0 4500 0.8361 0.8833
0.0 21.0 4725 0.8087 0.89
0.0 22.0 4950 0.8001 0.895
0.0 23.0 5175 0.7918 0.8933
0.0043 24.0 5400 0.8030 0.8917
0.0 25.0 5625 0.8092 0.895
0.0 26.0 5850 0.8142 0.8917
0.0 27.0 6075 0.8480 0.8833
0.0 28.0 6300 0.8065 0.8967
0.0035 29.0 6525 0.8102 0.8933
0.0 30.0 6750 0.8694 0.8933
0.0 31.0 6975 0.8371 0.8917
0.0 32.0 7200 0.8420 0.8933
0.0031 33.0 7425 0.8419 0.8933
0.0 34.0 7650 0.8459 0.8933
0.0028 35.0 7875 0.8578 0.8967
0.0 36.0 8100 0.8632 0.8917
0.0032 37.0 8325 0.8626 0.8933
0.0 38.0 8550 0.8689 0.895
0.0 39.0 8775 0.8751 0.8933
0.0 40.0 9000 0.8742 0.8933
0.0 41.0 9225 0.8784 0.8933
0.0 42.0 9450 0.8817 0.8933
0.0025 43.0 9675 0.8831 0.8933
0.0 44.0 9900 0.8843 0.895
0.0 45.0 10125 0.8846 0.895
0.0 46.0 10350 0.8903 0.895
0.0 47.0 10575 0.8928 0.895
0.0 48.0 10800 0.8941 0.895
0.0 49.0 11025 0.8949 0.895
0.0 50.0 11250 0.8955 0.895

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2