metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_base_adamax_0001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.895
smids_3x_deit_base_adamax_0001_fold5
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8955
- Accuracy: 0.895
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3014 | 1.0 | 225 | 0.3213 | 0.8717 |
0.0815 | 2.0 | 450 | 0.2900 | 0.8883 |
0.0668 | 3.0 | 675 | 0.4157 | 0.8817 |
0.0616 | 4.0 | 900 | 0.5373 | 0.8667 |
0.0313 | 5.0 | 1125 | 0.6762 | 0.8783 |
0.0139 | 6.0 | 1350 | 0.5421 | 0.8867 |
0.0228 | 7.0 | 1575 | 0.5956 | 0.885 |
0.0003 | 8.0 | 1800 | 0.6382 | 0.89 |
0.0191 | 9.0 | 2025 | 0.5798 | 0.8967 |
0.0066 | 10.0 | 2250 | 0.6950 | 0.8817 |
0.0002 | 11.0 | 2475 | 0.6959 | 0.8783 |
0.0105 | 12.0 | 2700 | 0.7866 | 0.8733 |
0.0009 | 13.0 | 2925 | 0.7496 | 0.8833 |
0.02 | 14.0 | 3150 | 0.7895 | 0.8917 |
0.0 | 15.0 | 3375 | 0.7885 | 0.8867 |
0.0 | 16.0 | 3600 | 0.8188 | 0.8783 |
0.0001 | 17.0 | 3825 | 0.8229 | 0.895 |
0.013 | 18.0 | 4050 | 0.8881 | 0.8867 |
0.008 | 19.0 | 4275 | 0.8377 | 0.8933 |
0.0001 | 20.0 | 4500 | 0.8361 | 0.8833 |
0.0 | 21.0 | 4725 | 0.8087 | 0.89 |
0.0 | 22.0 | 4950 | 0.8001 | 0.895 |
0.0 | 23.0 | 5175 | 0.7918 | 0.8933 |
0.0043 | 24.0 | 5400 | 0.8030 | 0.8917 |
0.0 | 25.0 | 5625 | 0.8092 | 0.895 |
0.0 | 26.0 | 5850 | 0.8142 | 0.8917 |
0.0 | 27.0 | 6075 | 0.8480 | 0.8833 |
0.0 | 28.0 | 6300 | 0.8065 | 0.8967 |
0.0035 | 29.0 | 6525 | 0.8102 | 0.8933 |
0.0 | 30.0 | 6750 | 0.8694 | 0.8933 |
0.0 | 31.0 | 6975 | 0.8371 | 0.8917 |
0.0 | 32.0 | 7200 | 0.8420 | 0.8933 |
0.0031 | 33.0 | 7425 | 0.8419 | 0.8933 |
0.0 | 34.0 | 7650 | 0.8459 | 0.8933 |
0.0028 | 35.0 | 7875 | 0.8578 | 0.8967 |
0.0 | 36.0 | 8100 | 0.8632 | 0.8917 |
0.0032 | 37.0 | 8325 | 0.8626 | 0.8933 |
0.0 | 38.0 | 8550 | 0.8689 | 0.895 |
0.0 | 39.0 | 8775 | 0.8751 | 0.8933 |
0.0 | 40.0 | 9000 | 0.8742 | 0.8933 |
0.0 | 41.0 | 9225 | 0.8784 | 0.8933 |
0.0 | 42.0 | 9450 | 0.8817 | 0.8933 |
0.0025 | 43.0 | 9675 | 0.8831 | 0.8933 |
0.0 | 44.0 | 9900 | 0.8843 | 0.895 |
0.0 | 45.0 | 10125 | 0.8846 | 0.895 |
0.0 | 46.0 | 10350 | 0.8903 | 0.895 |
0.0 | 47.0 | 10575 | 0.8928 | 0.895 |
0.0 | 48.0 | 10800 | 0.8941 | 0.895 |
0.0 | 49.0 | 11025 | 0.8949 | 0.895 |
0.0 | 50.0 | 11250 | 0.8955 | 0.895 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2