hkivancoral's picture
End of training
c0fb129
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_beit_base_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.38166666666666665

smids_3x_beit_base_sgd_001_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1851
  • Accuracy: 0.3817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2835 1.0 225 1.3130 0.3167
1.3011 2.0 450 1.3069 0.3167
1.243 3.0 675 1.3010 0.3217
1.2411 4.0 900 1.2953 0.325
1.2229 5.0 1125 1.2898 0.3233
1.2191 6.0 1350 1.2846 0.3233
1.2208 7.0 1575 1.2796 0.3233
1.1965 8.0 1800 1.2748 0.3283
1.2527 9.0 2025 1.2700 0.3333
1.2362 10.0 2250 1.2655 0.335
1.2197 11.0 2475 1.2613 0.335
1.2149 12.0 2700 1.2570 0.34
1.2002 13.0 2925 1.2530 0.3433
1.1732 14.0 3150 1.2491 0.3483
1.2252 15.0 3375 1.2454 0.35
1.1628 16.0 3600 1.2417 0.3533
1.1999 17.0 3825 1.2381 0.3583
1.1844 18.0 4050 1.2348 0.3617
1.1674 19.0 4275 1.2315 0.3617
1.2258 20.0 4500 1.2284 0.36
1.1214 21.0 4725 1.2254 0.3633
1.151 22.0 4950 1.2225 0.365
1.1693 23.0 5175 1.2197 0.3667
1.1675 24.0 5400 1.2170 0.3667
1.1534 25.0 5625 1.2144 0.3667
1.1654 26.0 5850 1.2120 0.3667
1.1707 27.0 6075 1.2097 0.3683
1.1315 28.0 6300 1.2075 0.3683
1.1501 29.0 6525 1.2054 0.37
1.1251 30.0 6750 1.2034 0.37
1.2017 31.0 6975 1.2016 0.3717
1.0794 32.0 7200 1.1998 0.3717
1.1172 33.0 7425 1.1981 0.3767
1.1136 34.0 7650 1.1965 0.38
1.1368 35.0 7875 1.1951 0.3817
1.1416 36.0 8100 1.1937 0.38
1.0723 37.0 8325 1.1925 0.3833
1.0984 38.0 8550 1.1914 0.3833
1.0812 39.0 8775 1.1903 0.3817
1.1275 40.0 9000 1.1894 0.3817
1.1166 41.0 9225 1.1885 0.3817
1.1269 42.0 9450 1.1878 0.3817
1.1329 43.0 9675 1.1871 0.3817
1.1408 44.0 9900 1.1865 0.3817
1.1416 45.0 10125 1.1861 0.3817
1.1445 46.0 10350 1.1857 0.3817
1.1225 47.0 10575 1.1854 0.3817
1.1385 48.0 10800 1.1852 0.3817
1.1537 49.0 11025 1.1851 0.3817
1.1246 50.0 11250 1.1851 0.3817

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2