hkivancoral's picture
End of training
425a0a1
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_beit_base_sgd_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8966666666666666

smids_3x_beit_base_sgd_001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2937
  • Accuracy: 0.8967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8635 1.0 225 0.8411 0.6267
0.6523 2.0 450 0.6173 0.7583
0.5403 3.0 675 0.5212 0.8017
0.4896 4.0 900 0.4692 0.8233
0.4594 5.0 1125 0.4353 0.8333
0.4326 6.0 1350 0.4063 0.8467
0.3692 7.0 1575 0.3897 0.855
0.4088 8.0 1800 0.3756 0.8567
0.4036 9.0 2025 0.3600 0.8667
0.387 10.0 2250 0.3535 0.8717
0.349 11.0 2475 0.3460 0.8717
0.3537 12.0 2700 0.3401 0.875
0.3714 13.0 2925 0.3342 0.8783
0.3497 14.0 3150 0.3327 0.8817
0.2955 15.0 3375 0.3234 0.8867
0.346 16.0 3600 0.3197 0.8933
0.3452 17.0 3825 0.3164 0.89
0.3182 18.0 4050 0.3143 0.8867
0.3047 19.0 4275 0.3110 0.8933
0.3008 20.0 4500 0.3105 0.8883
0.2783 21.0 4725 0.3050 0.8917
0.2751 22.0 4950 0.3037 0.8967
0.2477 23.0 5175 0.3059 0.8917
0.2485 24.0 5400 0.3040 0.8917
0.2841 25.0 5625 0.3099 0.8917
0.2803 26.0 5850 0.3058 0.8967
0.2313 27.0 6075 0.3019 0.8933
0.2302 28.0 6300 0.3005 0.895
0.2775 29.0 6525 0.2994 0.895
0.2039 30.0 6750 0.2961 0.9
0.261 31.0 6975 0.2949 0.9
0.2791 32.0 7200 0.2986 0.895
0.2917 33.0 7425 0.2938 0.8983
0.2364 34.0 7650 0.2966 0.895
0.2087 35.0 7875 0.2917 0.9
0.2544 36.0 8100 0.2944 0.8983
0.2254 37.0 8325 0.2941 0.8967
0.2119 38.0 8550 0.2972 0.8933
0.2445 39.0 8775 0.2905 0.9
0.204 40.0 9000 0.2909 0.8967
0.2353 41.0 9225 0.2968 0.895
0.2574 42.0 9450 0.2926 0.9
0.2197 43.0 9675 0.2953 0.8967
0.2519 44.0 9900 0.2939 0.8967
0.2337 45.0 10125 0.2971 0.895
0.2047 46.0 10350 0.2932 0.8967
0.2633 47.0 10575 0.2935 0.8967
0.2254 48.0 10800 0.2947 0.895
0.2679 49.0 11025 0.2937 0.895
0.2687 50.0 11250 0.2937 0.8967

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2