metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_beit_base_sgd_0001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7866666666666666
smids_3x_beit_base_sgd_0001_fold3
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5470
- Accuracy: 0.7867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.2271 | 1.0 | 225 | 1.2660 | 0.34 |
1.1764 | 2.0 | 450 | 1.2039 | 0.36 |
1.0866 | 3.0 | 675 | 1.1482 | 0.3833 |
1.02 | 4.0 | 900 | 1.0954 | 0.41 |
0.9521 | 5.0 | 1125 | 1.0436 | 0.4433 |
0.9373 | 6.0 | 1350 | 0.9954 | 0.485 |
0.8962 | 7.0 | 1575 | 0.9512 | 0.5317 |
0.8694 | 8.0 | 1800 | 0.9106 | 0.5767 |
0.8253 | 9.0 | 2025 | 0.8739 | 0.5967 |
0.8297 | 10.0 | 2250 | 0.8416 | 0.635 |
0.8158 | 11.0 | 2475 | 0.8130 | 0.6633 |
0.75 | 12.0 | 2700 | 0.7869 | 0.685 |
0.7851 | 13.0 | 2925 | 0.7633 | 0.69 |
0.761 | 14.0 | 3150 | 0.7425 | 0.7017 |
0.6927 | 15.0 | 3375 | 0.7233 | 0.7117 |
0.7078 | 16.0 | 3600 | 0.7069 | 0.7217 |
0.698 | 17.0 | 3825 | 0.6913 | 0.7283 |
0.6847 | 18.0 | 4050 | 0.6778 | 0.7367 |
0.6863 | 19.0 | 4275 | 0.6656 | 0.7383 |
0.6396 | 20.0 | 4500 | 0.6548 | 0.7417 |
0.6511 | 21.0 | 4725 | 0.6448 | 0.745 |
0.6297 | 22.0 | 4950 | 0.6350 | 0.7517 |
0.6013 | 23.0 | 5175 | 0.6267 | 0.755 |
0.635 | 24.0 | 5400 | 0.6187 | 0.76 |
0.6174 | 25.0 | 5625 | 0.6116 | 0.7583 |
0.6201 | 26.0 | 5850 | 0.6053 | 0.7617 |
0.5888 | 27.0 | 6075 | 0.5991 | 0.7617 |
0.5833 | 28.0 | 6300 | 0.5934 | 0.7633 |
0.6387 | 29.0 | 6525 | 0.5887 | 0.7683 |
0.5339 | 30.0 | 6750 | 0.5839 | 0.7717 |
0.5756 | 31.0 | 6975 | 0.5797 | 0.7767 |
0.6386 | 32.0 | 7200 | 0.5758 | 0.775 |
0.6245 | 33.0 | 7425 | 0.5722 | 0.775 |
0.5779 | 34.0 | 7650 | 0.5690 | 0.7767 |
0.57 | 35.0 | 7875 | 0.5661 | 0.7767 |
0.5776 | 36.0 | 8100 | 0.5632 | 0.7767 |
0.5861 | 37.0 | 8325 | 0.5611 | 0.7767 |
0.5518 | 38.0 | 8550 | 0.5586 | 0.7767 |
0.604 | 39.0 | 8775 | 0.5567 | 0.7817 |
0.539 | 40.0 | 9000 | 0.5549 | 0.7833 |
0.5457 | 41.0 | 9225 | 0.5534 | 0.7833 |
0.6155 | 42.0 | 9450 | 0.5518 | 0.785 |
0.5379 | 43.0 | 9675 | 0.5506 | 0.785 |
0.5848 | 44.0 | 9900 | 0.5496 | 0.7867 |
0.5814 | 45.0 | 10125 | 0.5488 | 0.7867 |
0.5255 | 46.0 | 10350 | 0.5481 | 0.7867 |
0.5726 | 47.0 | 10575 | 0.5476 | 0.7867 |
0.5762 | 48.0 | 10800 | 0.5473 | 0.7867 |
0.6192 | 49.0 | 11025 | 0.5471 | 0.7867 |
0.5747 | 50.0 | 11250 | 0.5470 | 0.7867 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2