hkivancoral's picture
End of training
d503d9c
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_beit_base_sgd_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7866666666666666

smids_3x_beit_base_sgd_0001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5470
  • Accuracy: 0.7867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2271 1.0 225 1.2660 0.34
1.1764 2.0 450 1.2039 0.36
1.0866 3.0 675 1.1482 0.3833
1.02 4.0 900 1.0954 0.41
0.9521 5.0 1125 1.0436 0.4433
0.9373 6.0 1350 0.9954 0.485
0.8962 7.0 1575 0.9512 0.5317
0.8694 8.0 1800 0.9106 0.5767
0.8253 9.0 2025 0.8739 0.5967
0.8297 10.0 2250 0.8416 0.635
0.8158 11.0 2475 0.8130 0.6633
0.75 12.0 2700 0.7869 0.685
0.7851 13.0 2925 0.7633 0.69
0.761 14.0 3150 0.7425 0.7017
0.6927 15.0 3375 0.7233 0.7117
0.7078 16.0 3600 0.7069 0.7217
0.698 17.0 3825 0.6913 0.7283
0.6847 18.0 4050 0.6778 0.7367
0.6863 19.0 4275 0.6656 0.7383
0.6396 20.0 4500 0.6548 0.7417
0.6511 21.0 4725 0.6448 0.745
0.6297 22.0 4950 0.6350 0.7517
0.6013 23.0 5175 0.6267 0.755
0.635 24.0 5400 0.6187 0.76
0.6174 25.0 5625 0.6116 0.7583
0.6201 26.0 5850 0.6053 0.7617
0.5888 27.0 6075 0.5991 0.7617
0.5833 28.0 6300 0.5934 0.7633
0.6387 29.0 6525 0.5887 0.7683
0.5339 30.0 6750 0.5839 0.7717
0.5756 31.0 6975 0.5797 0.7767
0.6386 32.0 7200 0.5758 0.775
0.6245 33.0 7425 0.5722 0.775
0.5779 34.0 7650 0.5690 0.7767
0.57 35.0 7875 0.5661 0.7767
0.5776 36.0 8100 0.5632 0.7767
0.5861 37.0 8325 0.5611 0.7767
0.5518 38.0 8550 0.5586 0.7767
0.604 39.0 8775 0.5567 0.7817
0.539 40.0 9000 0.5549 0.7833
0.5457 41.0 9225 0.5534 0.7833
0.6155 42.0 9450 0.5518 0.785
0.5379 43.0 9675 0.5506 0.785
0.5848 44.0 9900 0.5496 0.7867
0.5814 45.0 10125 0.5488 0.7867
0.5255 46.0 10350 0.5481 0.7867
0.5726 47.0 10575 0.5476 0.7867
0.5762 48.0 10800 0.5473 0.7867
0.6192 49.0 11025 0.5471 0.7867
0.5747 50.0 11250 0.5470 0.7867

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2