metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_beit_base_rms_00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.93
smids_3x_beit_base_rms_00001_fold3
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7714
- Accuracy: 0.93
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2858 | 1.0 | 225 | 0.2465 | 0.9067 |
0.1768 | 2.0 | 450 | 0.2541 | 0.9117 |
0.0881 | 3.0 | 675 | 0.2719 | 0.9133 |
0.0505 | 4.0 | 900 | 0.3645 | 0.9083 |
0.0569 | 5.0 | 1125 | 0.3912 | 0.9117 |
0.0143 | 6.0 | 1350 | 0.5093 | 0.91 |
0.0377 | 7.0 | 1575 | 0.6703 | 0.895 |
0.0322 | 8.0 | 1800 | 0.5423 | 0.9067 |
0.0082 | 9.0 | 2025 | 0.5861 | 0.92 |
0.0276 | 10.0 | 2250 | 0.6888 | 0.9133 |
0.0302 | 11.0 | 2475 | 0.6182 | 0.92 |
0.0237 | 12.0 | 2700 | 0.7796 | 0.9067 |
0.006 | 13.0 | 2925 | 0.6569 | 0.9217 |
0.0168 | 14.0 | 3150 | 0.6640 | 0.925 |
0.0004 | 15.0 | 3375 | 0.7467 | 0.9083 |
0.0142 | 16.0 | 3600 | 0.8289 | 0.9033 |
0.001 | 17.0 | 3825 | 0.7332 | 0.9183 |
0.0 | 18.0 | 4050 | 0.7402 | 0.9167 |
0.0125 | 19.0 | 4275 | 0.7537 | 0.9183 |
0.0043 | 20.0 | 4500 | 0.7046 | 0.9233 |
0.0 | 21.0 | 4725 | 0.7969 | 0.9067 |
0.0052 | 22.0 | 4950 | 0.7422 | 0.9217 |
0.0 | 23.0 | 5175 | 0.7848 | 0.9083 |
0.0005 | 24.0 | 5400 | 0.8567 | 0.9133 |
0.0301 | 25.0 | 5625 | 0.7666 | 0.9267 |
0.0039 | 26.0 | 5850 | 0.7330 | 0.9217 |
0.0001 | 27.0 | 6075 | 0.7599 | 0.9233 |
0.0002 | 28.0 | 6300 | 0.8806 | 0.9083 |
0.0061 | 29.0 | 6525 | 0.7763 | 0.92 |
0.004 | 30.0 | 6750 | 0.8161 | 0.9117 |
0.0022 | 31.0 | 6975 | 0.8369 | 0.9217 |
0.0 | 32.0 | 7200 | 0.7564 | 0.9283 |
0.0005 | 33.0 | 7425 | 0.7872 | 0.9283 |
0.0001 | 34.0 | 7650 | 0.8316 | 0.9183 |
0.0001 | 35.0 | 7875 | 0.8563 | 0.915 |
0.0 | 36.0 | 8100 | 0.7792 | 0.9267 |
0.0 | 37.0 | 8325 | 0.8267 | 0.9217 |
0.0 | 38.0 | 8550 | 0.8036 | 0.9233 |
0.0003 | 39.0 | 8775 | 0.8623 | 0.9217 |
0.0 | 40.0 | 9000 | 0.8053 | 0.9167 |
0.0004 | 41.0 | 9225 | 0.7926 | 0.93 |
0.0 | 42.0 | 9450 | 0.7751 | 0.9267 |
0.0 | 43.0 | 9675 | 0.8025 | 0.9267 |
0.0 | 44.0 | 9900 | 0.7634 | 0.925 |
0.0 | 45.0 | 10125 | 0.7768 | 0.9283 |
0.0175 | 46.0 | 10350 | 0.8501 | 0.92 |
0.0025 | 47.0 | 10575 | 0.7670 | 0.93 |
0.0003 | 48.0 | 10800 | 0.7741 | 0.925 |
0.0 | 49.0 | 11025 | 0.7719 | 0.9283 |
0.0001 | 50.0 | 11250 | 0.7714 | 0.93 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2