hkivancoral's picture
End of training
8917983
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_beit_base_rms_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.93

smids_3x_beit_base_rms_00001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7714
  • Accuracy: 0.93

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2858 1.0 225 0.2465 0.9067
0.1768 2.0 450 0.2541 0.9117
0.0881 3.0 675 0.2719 0.9133
0.0505 4.0 900 0.3645 0.9083
0.0569 5.0 1125 0.3912 0.9117
0.0143 6.0 1350 0.5093 0.91
0.0377 7.0 1575 0.6703 0.895
0.0322 8.0 1800 0.5423 0.9067
0.0082 9.0 2025 0.5861 0.92
0.0276 10.0 2250 0.6888 0.9133
0.0302 11.0 2475 0.6182 0.92
0.0237 12.0 2700 0.7796 0.9067
0.006 13.0 2925 0.6569 0.9217
0.0168 14.0 3150 0.6640 0.925
0.0004 15.0 3375 0.7467 0.9083
0.0142 16.0 3600 0.8289 0.9033
0.001 17.0 3825 0.7332 0.9183
0.0 18.0 4050 0.7402 0.9167
0.0125 19.0 4275 0.7537 0.9183
0.0043 20.0 4500 0.7046 0.9233
0.0 21.0 4725 0.7969 0.9067
0.0052 22.0 4950 0.7422 0.9217
0.0 23.0 5175 0.7848 0.9083
0.0005 24.0 5400 0.8567 0.9133
0.0301 25.0 5625 0.7666 0.9267
0.0039 26.0 5850 0.7330 0.9217
0.0001 27.0 6075 0.7599 0.9233
0.0002 28.0 6300 0.8806 0.9083
0.0061 29.0 6525 0.7763 0.92
0.004 30.0 6750 0.8161 0.9117
0.0022 31.0 6975 0.8369 0.9217
0.0 32.0 7200 0.7564 0.9283
0.0005 33.0 7425 0.7872 0.9283
0.0001 34.0 7650 0.8316 0.9183
0.0001 35.0 7875 0.8563 0.915
0.0 36.0 8100 0.7792 0.9267
0.0 37.0 8325 0.8267 0.9217
0.0 38.0 8550 0.8036 0.9233
0.0003 39.0 8775 0.8623 0.9217
0.0 40.0 9000 0.8053 0.9167
0.0004 41.0 9225 0.7926 0.93
0.0 42.0 9450 0.7751 0.9267
0.0 43.0 9675 0.8025 0.9267
0.0 44.0 9900 0.7634 0.925
0.0 45.0 10125 0.7768 0.9283
0.0175 46.0 10350 0.8501 0.92
0.0025 47.0 10575 0.7670 0.93
0.0003 48.0 10800 0.7741 0.925
0.0 49.0 11025 0.7719 0.9283
0.0001 50.0 11250 0.7714 0.93

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2