hkivancoral's picture
End of training
0dd560d
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_beit_base_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8816666666666667

smids_3x_beit_base_adamax_001_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1371
  • Accuracy: 0.8817

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4638 1.0 225 0.4831 0.8
0.3593 2.0 450 0.4972 0.8017
0.3188 3.0 675 0.4598 0.8167
0.3007 4.0 900 0.3652 0.8567
0.1782 5.0 1125 0.4943 0.8467
0.2023 6.0 1350 0.3456 0.8833
0.1823 7.0 1575 0.4718 0.8517
0.2135 8.0 1800 0.4289 0.8333
0.1901 9.0 2025 0.3868 0.8767
0.1186 10.0 2250 0.5005 0.8567
0.1591 11.0 2475 0.4399 0.8633
0.1322 12.0 2700 0.4503 0.88
0.1689 13.0 2925 0.5822 0.855
0.1287 14.0 3150 0.5651 0.8533
0.0522 15.0 3375 0.6382 0.875
0.0395 16.0 3600 0.6522 0.88
0.0429 17.0 3825 0.6980 0.875
0.0661 18.0 4050 0.7096 0.855
0.0192 19.0 4275 0.7298 0.8733
0.0389 20.0 4500 0.7458 0.875
0.0026 21.0 4725 0.7349 0.88
0.0037 22.0 4950 0.8178 0.8833
0.006 23.0 5175 0.9683 0.8667
0.0578 24.0 5400 0.7875 0.8817
0.049 25.0 5625 0.7063 0.87
0.0011 26.0 5850 0.8220 0.8717
0.0006 27.0 6075 0.7462 0.8833
0.0152 28.0 6300 0.8411 0.8817
0.0204 29.0 6525 0.9258 0.875
0.0002 30.0 6750 0.8705 0.8683
0.0004 31.0 6975 0.8382 0.88
0.0001 32.0 7200 0.8871 0.8767
0.0069 33.0 7425 0.6754 0.8983
0.0062 34.0 7650 0.7823 0.8983
0.003 35.0 7875 0.8358 0.8883
0.0 36.0 8100 0.9463 0.885
0.0144 37.0 8325 1.0937 0.8717
0.0078 38.0 8550 1.0295 0.8867
0.0 39.0 8775 1.0240 0.8883
0.0001 40.0 9000 1.0443 0.8833
0.0 41.0 9225 1.0675 0.8933
0.0 42.0 9450 1.1657 0.8767
0.0035 43.0 9675 1.1312 0.8717
0.0 44.0 9900 1.1156 0.885
0.0 45.0 10125 1.1160 0.8817
0.0 46.0 10350 1.1325 0.8833
0.0008 47.0 10575 1.1407 0.8817
0.0 48.0 10800 1.1472 0.88
0.0001 49.0 11025 1.1387 0.8817
0.0 50.0 11250 1.1371 0.8817

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2