hkivancoral's picture
End of training
731cf06
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_beit_base_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8851913477537438

smids_3x_beit_base_adamax_001_fold2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9992
  • Accuracy: 0.8852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6049 1.0 225 0.5478 0.7787
0.4381 2.0 450 0.4409 0.8270
0.378 3.0 675 0.4173 0.8386
0.3898 4.0 900 0.3437 0.8636
0.2572 5.0 1125 0.5400 0.8153
0.2909 6.0 1350 0.3922 0.8686
0.2559 7.0 1575 0.3276 0.8669
0.1836 8.0 1800 0.4262 0.8536
0.1786 9.0 2025 0.4524 0.8652
0.114 10.0 2250 0.4178 0.8652
0.1999 11.0 2475 0.4725 0.8619
0.0816 12.0 2700 0.4168 0.8802
0.1006 13.0 2925 0.4871 0.8636
0.0621 14.0 3150 0.5045 0.8486
0.1207 15.0 3375 0.5359 0.8735
0.1626 16.0 3600 0.5831 0.8586
0.0687 17.0 3825 0.5917 0.8702
0.0286 18.0 4050 0.6265 0.8819
0.0163 19.0 4275 0.5886 0.8752
0.0426 20.0 4500 0.5976 0.8686
0.0173 21.0 4725 0.5968 0.8819
0.0472 22.0 4950 0.8302 0.8586
0.0232 23.0 5175 0.7287 0.8769
0.0189 24.0 5400 0.6779 0.8686
0.0355 25.0 5625 0.7090 0.8802
0.0055 26.0 5850 0.7826 0.8769
0.003 27.0 6075 0.6780 0.8752
0.0006 28.0 6300 0.8190 0.8652
0.0008 29.0 6525 0.8233 0.8602
0.01 30.0 6750 0.8980 0.8552
0.0041 31.0 6975 0.9765 0.8552
0.002 32.0 7200 0.9007 0.8619
0.0055 33.0 7425 0.9545 0.8735
0.0034 34.0 7650 0.8622 0.8719
0.0003 35.0 7875 0.9467 0.8785
0.0042 36.0 8100 0.8925 0.8819
0.0003 37.0 8325 0.9807 0.8802
0.0 38.0 8550 1.0504 0.8769
0.0067 39.0 8775 1.0615 0.8752
0.0017 40.0 9000 1.0987 0.8719
0.0011 41.0 9225 1.0223 0.8835
0.0001 42.0 9450 0.9989 0.8852
0.0 43.0 9675 0.9839 0.8852
0.0 44.0 9900 1.0002 0.8802
0.0 45.0 10125 0.9842 0.8869
0.0002 46.0 10350 0.9885 0.8885
0.0 47.0 10575 0.9981 0.8869
0.0 48.0 10800 0.9986 0.8852
0.0051 49.0 11025 0.9988 0.8835
0.0023 50.0 11250 0.9992 0.8852

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2