metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_beit_base_adamax_001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8851913477537438
smids_3x_beit_base_adamax_001_fold2
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9992
- Accuracy: 0.8852
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6049 | 1.0 | 225 | 0.5478 | 0.7787 |
0.4381 | 2.0 | 450 | 0.4409 | 0.8270 |
0.378 | 3.0 | 675 | 0.4173 | 0.8386 |
0.3898 | 4.0 | 900 | 0.3437 | 0.8636 |
0.2572 | 5.0 | 1125 | 0.5400 | 0.8153 |
0.2909 | 6.0 | 1350 | 0.3922 | 0.8686 |
0.2559 | 7.0 | 1575 | 0.3276 | 0.8669 |
0.1836 | 8.0 | 1800 | 0.4262 | 0.8536 |
0.1786 | 9.0 | 2025 | 0.4524 | 0.8652 |
0.114 | 10.0 | 2250 | 0.4178 | 0.8652 |
0.1999 | 11.0 | 2475 | 0.4725 | 0.8619 |
0.0816 | 12.0 | 2700 | 0.4168 | 0.8802 |
0.1006 | 13.0 | 2925 | 0.4871 | 0.8636 |
0.0621 | 14.0 | 3150 | 0.5045 | 0.8486 |
0.1207 | 15.0 | 3375 | 0.5359 | 0.8735 |
0.1626 | 16.0 | 3600 | 0.5831 | 0.8586 |
0.0687 | 17.0 | 3825 | 0.5917 | 0.8702 |
0.0286 | 18.0 | 4050 | 0.6265 | 0.8819 |
0.0163 | 19.0 | 4275 | 0.5886 | 0.8752 |
0.0426 | 20.0 | 4500 | 0.5976 | 0.8686 |
0.0173 | 21.0 | 4725 | 0.5968 | 0.8819 |
0.0472 | 22.0 | 4950 | 0.8302 | 0.8586 |
0.0232 | 23.0 | 5175 | 0.7287 | 0.8769 |
0.0189 | 24.0 | 5400 | 0.6779 | 0.8686 |
0.0355 | 25.0 | 5625 | 0.7090 | 0.8802 |
0.0055 | 26.0 | 5850 | 0.7826 | 0.8769 |
0.003 | 27.0 | 6075 | 0.6780 | 0.8752 |
0.0006 | 28.0 | 6300 | 0.8190 | 0.8652 |
0.0008 | 29.0 | 6525 | 0.8233 | 0.8602 |
0.01 | 30.0 | 6750 | 0.8980 | 0.8552 |
0.0041 | 31.0 | 6975 | 0.9765 | 0.8552 |
0.002 | 32.0 | 7200 | 0.9007 | 0.8619 |
0.0055 | 33.0 | 7425 | 0.9545 | 0.8735 |
0.0034 | 34.0 | 7650 | 0.8622 | 0.8719 |
0.0003 | 35.0 | 7875 | 0.9467 | 0.8785 |
0.0042 | 36.0 | 8100 | 0.8925 | 0.8819 |
0.0003 | 37.0 | 8325 | 0.9807 | 0.8802 |
0.0 | 38.0 | 8550 | 1.0504 | 0.8769 |
0.0067 | 39.0 | 8775 | 1.0615 | 0.8752 |
0.0017 | 40.0 | 9000 | 1.0987 | 0.8719 |
0.0011 | 41.0 | 9225 | 1.0223 | 0.8835 |
0.0001 | 42.0 | 9450 | 0.9989 | 0.8852 |
0.0 | 43.0 | 9675 | 0.9839 | 0.8852 |
0.0 | 44.0 | 9900 | 1.0002 | 0.8802 |
0.0 | 45.0 | 10125 | 0.9842 | 0.8869 |
0.0002 | 46.0 | 10350 | 0.9885 | 0.8885 |
0.0 | 47.0 | 10575 | 0.9981 | 0.8869 |
0.0 | 48.0 | 10800 | 0.9986 | 0.8852 |
0.0051 | 49.0 | 11025 | 0.9988 | 0.8835 |
0.0023 | 50.0 | 11250 | 0.9992 | 0.8852 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2