hkivancoral's picture
End of training
fd991a6
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.84

smids_1x_beit_base_sgd_001_fold5

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3960
  • Accuracy: 0.84

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0915 1.0 75 1.0482 0.46
0.8641 2.0 150 0.8453 0.6317
0.8005 3.0 225 0.7497 0.67
0.7495 4.0 300 0.6945 0.7067
0.7055 5.0 375 0.6553 0.7467
0.7202 6.0 450 0.6245 0.75
0.6588 7.0 525 0.6019 0.7583
0.6049 8.0 600 0.5871 0.76
0.6317 9.0 675 0.5605 0.7833
0.5775 10.0 750 0.5437 0.785
0.5951 11.0 825 0.5303 0.7933
0.5297 12.0 900 0.5191 0.79
0.5261 13.0 975 0.5051 0.7933
0.5545 14.0 1050 0.4974 0.7983
0.4597 15.0 1125 0.4949 0.805
0.4273 16.0 1200 0.4837 0.8017
0.4781 17.0 1275 0.4758 0.8067
0.4613 18.0 1350 0.4662 0.815
0.4966 19.0 1425 0.4609 0.8133
0.5166 20.0 1500 0.4558 0.81
0.4529 21.0 1575 0.4548 0.8167
0.4333 22.0 1650 0.4478 0.8233
0.4673 23.0 1725 0.4422 0.8183
0.402 24.0 1800 0.4383 0.8283
0.4207 25.0 1875 0.4375 0.8283
0.4343 26.0 1950 0.4301 0.8267
0.4249 27.0 2025 0.4265 0.8283
0.4127 28.0 2100 0.4255 0.8267
0.4286 29.0 2175 0.4192 0.8367
0.3988 30.0 2250 0.4174 0.8367
0.3838 31.0 2325 0.4145 0.8383
0.3896 32.0 2400 0.4157 0.835
0.4348 33.0 2475 0.4153 0.825
0.41 34.0 2550 0.4109 0.8367
0.3989 35.0 2625 0.4069 0.84
0.3824 36.0 2700 0.4101 0.8367
0.3688 37.0 2775 0.4062 0.8367
0.4091 38.0 2850 0.4063 0.8367
0.3672 39.0 2925 0.4039 0.835
0.4219 40.0 3000 0.4009 0.8383
0.4047 41.0 3075 0.4024 0.8383
0.4168 42.0 3150 0.3989 0.835
0.4198 43.0 3225 0.3971 0.8417
0.4236 44.0 3300 0.3971 0.84
0.3959 45.0 3375 0.3975 0.8433
0.3933 46.0 3450 0.3984 0.8433
0.3443 47.0 3525 0.3963 0.8417
0.3626 48.0 3600 0.3958 0.8417
0.38 49.0 3675 0.3960 0.8417
0.3733 50.0 3750 0.3960 0.84

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0