metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_beit_base_rms_0001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7333333333333333
smids_1x_beit_base_rms_0001_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6670
- Accuracy: 0.7333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1121 | 1.0 | 75 | 1.0797 | 0.495 |
1.1167 | 2.0 | 150 | 1.0990 | 0.3383 |
1.1124 | 3.0 | 225 | 1.0945 | 0.3583 |
1.0914 | 4.0 | 300 | 1.0750 | 0.35 |
1.0647 | 5.0 | 375 | 0.8667 | 0.5733 |
0.9583 | 6.0 | 450 | 0.8905 | 0.51 |
0.8629 | 7.0 | 525 | 0.7806 | 0.5767 |
0.8438 | 8.0 | 600 | 0.7603 | 0.5833 |
0.812 | 9.0 | 675 | 0.7613 | 0.595 |
0.7427 | 10.0 | 750 | 0.8115 | 0.5917 |
0.8147 | 11.0 | 825 | 0.7428 | 0.63 |
0.7859 | 12.0 | 900 | 0.7365 | 0.635 |
0.8142 | 13.0 | 975 | 0.7468 | 0.6033 |
0.7961 | 14.0 | 1050 | 0.7567 | 0.5983 |
0.6725 | 15.0 | 1125 | 0.7876 | 0.6067 |
0.7608 | 16.0 | 1200 | 0.7339 | 0.635 |
0.7146 | 17.0 | 1275 | 0.7178 | 0.645 |
0.6646 | 18.0 | 1350 | 0.7089 | 0.67 |
0.7767 | 19.0 | 1425 | 0.7436 | 0.6433 |
0.7149 | 20.0 | 1500 | 0.7664 | 0.655 |
0.7622 | 21.0 | 1575 | 0.7227 | 0.6617 |
0.6643 | 22.0 | 1650 | 0.7547 | 0.64 |
0.7546 | 23.0 | 1725 | 0.7439 | 0.6483 |
0.727 | 24.0 | 1800 | 0.7101 | 0.6633 |
0.7334 | 25.0 | 1875 | 0.7022 | 0.6583 |
0.6824 | 26.0 | 1950 | 0.7040 | 0.6767 |
0.7383 | 27.0 | 2025 | 0.6953 | 0.6733 |
0.6459 | 28.0 | 2100 | 0.6860 | 0.6883 |
0.7094 | 29.0 | 2175 | 0.6882 | 0.695 |
0.7817 | 30.0 | 2250 | 0.6855 | 0.6883 |
0.6417 | 31.0 | 2325 | 0.6762 | 0.705 |
0.7236 | 32.0 | 2400 | 0.6870 | 0.6917 |
0.6676 | 33.0 | 2475 | 0.7290 | 0.685 |
0.5839 | 34.0 | 2550 | 0.6648 | 0.7117 |
0.6323 | 35.0 | 2625 | 0.6543 | 0.7017 |
0.6129 | 36.0 | 2700 | 0.6910 | 0.6883 |
0.5785 | 37.0 | 2775 | 0.6666 | 0.7217 |
0.6055 | 38.0 | 2850 | 0.6452 | 0.7233 |
0.5778 | 39.0 | 2925 | 0.6586 | 0.7217 |
0.5892 | 40.0 | 3000 | 0.6725 | 0.7233 |
0.6346 | 41.0 | 3075 | 0.6632 | 0.715 |
0.5806 | 42.0 | 3150 | 0.6697 | 0.7217 |
0.6328 | 43.0 | 3225 | 0.6659 | 0.7117 |
0.5711 | 44.0 | 3300 | 0.6651 | 0.71 |
0.5685 | 45.0 | 3375 | 0.6727 | 0.7283 |
0.4903 | 46.0 | 3450 | 0.6607 | 0.7383 |
0.5197 | 47.0 | 3525 | 0.6770 | 0.7283 |
0.5572 | 48.0 | 3600 | 0.6616 | 0.7183 |
0.5197 | 49.0 | 3675 | 0.6636 | 0.73 |
0.489 | 50.0 | 3750 | 0.6670 | 0.7333 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0