hkivancoral's picture
End of training
0c01ee8
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_rms_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7333333333333333

smids_1x_beit_base_rms_0001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6670
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1121 1.0 75 1.0797 0.495
1.1167 2.0 150 1.0990 0.3383
1.1124 3.0 225 1.0945 0.3583
1.0914 4.0 300 1.0750 0.35
1.0647 5.0 375 0.8667 0.5733
0.9583 6.0 450 0.8905 0.51
0.8629 7.0 525 0.7806 0.5767
0.8438 8.0 600 0.7603 0.5833
0.812 9.0 675 0.7613 0.595
0.7427 10.0 750 0.8115 0.5917
0.8147 11.0 825 0.7428 0.63
0.7859 12.0 900 0.7365 0.635
0.8142 13.0 975 0.7468 0.6033
0.7961 14.0 1050 0.7567 0.5983
0.6725 15.0 1125 0.7876 0.6067
0.7608 16.0 1200 0.7339 0.635
0.7146 17.0 1275 0.7178 0.645
0.6646 18.0 1350 0.7089 0.67
0.7767 19.0 1425 0.7436 0.6433
0.7149 20.0 1500 0.7664 0.655
0.7622 21.0 1575 0.7227 0.6617
0.6643 22.0 1650 0.7547 0.64
0.7546 23.0 1725 0.7439 0.6483
0.727 24.0 1800 0.7101 0.6633
0.7334 25.0 1875 0.7022 0.6583
0.6824 26.0 1950 0.7040 0.6767
0.7383 27.0 2025 0.6953 0.6733
0.6459 28.0 2100 0.6860 0.6883
0.7094 29.0 2175 0.6882 0.695
0.7817 30.0 2250 0.6855 0.6883
0.6417 31.0 2325 0.6762 0.705
0.7236 32.0 2400 0.6870 0.6917
0.6676 33.0 2475 0.7290 0.685
0.5839 34.0 2550 0.6648 0.7117
0.6323 35.0 2625 0.6543 0.7017
0.6129 36.0 2700 0.6910 0.6883
0.5785 37.0 2775 0.6666 0.7217
0.6055 38.0 2850 0.6452 0.7233
0.5778 39.0 2925 0.6586 0.7217
0.5892 40.0 3000 0.6725 0.7233
0.6346 41.0 3075 0.6632 0.715
0.5806 42.0 3150 0.6697 0.7217
0.6328 43.0 3225 0.6659 0.7117
0.5711 44.0 3300 0.6651 0.71
0.5685 45.0 3375 0.6727 0.7283
0.4903 46.0 3450 0.6607 0.7383
0.5197 47.0 3525 0.6770 0.7283
0.5572 48.0 3600 0.6616 0.7183
0.5197 49.0 3675 0.6636 0.73
0.489 50.0 3750 0.6670 0.7333

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0