hkivancoral's picture
End of training
ed3f3f6
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_rms_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.92

smids_1x_beit_base_rms_00001_fold3

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6179
  • Accuracy: 0.92

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.378 1.0 75 0.2655 0.905
0.1995 2.0 150 0.2472 0.9067
0.1269 3.0 225 0.2601 0.9133
0.0982 4.0 300 0.2718 0.9183
0.0334 5.0 375 0.3064 0.9183
0.0325 6.0 450 0.3593 0.9017
0.0122 7.0 525 0.4158 0.9133
0.0276 8.0 600 0.3999 0.915
0.0023 9.0 675 0.4376 0.91
0.0029 10.0 750 0.4955 0.91
0.0282 11.0 825 0.4886 0.9133
0.0074 12.0 900 0.4903 0.9083
0.0119 13.0 975 0.4968 0.9183
0.0151 14.0 1050 0.4966 0.9067
0.0139 15.0 1125 0.4573 0.9267
0.0049 16.0 1200 0.4797 0.9267
0.0357 17.0 1275 0.4808 0.9317
0.0195 18.0 1350 0.5297 0.9133
0.0164 19.0 1425 0.5446 0.9233
0.0136 20.0 1500 0.5630 0.915
0.0002 21.0 1575 0.6196 0.9083
0.0053 22.0 1650 0.5529 0.915
0.002 23.0 1725 0.5621 0.9183
0.0001 24.0 1800 0.5333 0.9233
0.0008 25.0 1875 0.5371 0.9217
0.0014 26.0 1950 0.5172 0.93
0.0001 27.0 2025 0.5437 0.9233
0.0001 28.0 2100 0.5344 0.9283
0.0001 29.0 2175 0.5536 0.9183
0.0075 30.0 2250 0.6086 0.9083
0.0046 31.0 2325 0.5570 0.9133
0.0077 32.0 2400 0.6038 0.915
0.0016 33.0 2475 0.6324 0.9133
0.0004 34.0 2550 0.5847 0.9217
0.0039 35.0 2625 0.6482 0.9183
0.0029 36.0 2700 0.6146 0.9267
0.0076 37.0 2775 0.5750 0.9217
0.0017 38.0 2850 0.5846 0.9233
0.0 39.0 2925 0.5952 0.9233
0.0018 40.0 3000 0.6016 0.9217
0.0 41.0 3075 0.6081 0.9267
0.0026 42.0 3150 0.6036 0.9233
0.0001 43.0 3225 0.6419 0.915
0.0 44.0 3300 0.6346 0.915
0.0 45.0 3375 0.6400 0.915
0.0001 46.0 3450 0.6220 0.9233
0.0039 47.0 3525 0.6179 0.9233
0.0001 48.0 3600 0.6159 0.9183
0.0 49.0 3675 0.6170 0.92
0.0 50.0 3750 0.6179 0.92

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0