hkivancoral's picture
End of training
6d55bdf
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_beit_base_adamax_00001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8733333333333333

smids_1x_beit_base_adamax_00001_fold4

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9690
  • Accuracy: 0.8733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3842 1.0 75 0.3836 0.8567
0.2698 2.0 150 0.3565 0.8717
0.2112 3.0 225 0.3725 0.8667
0.1563 4.0 300 0.3983 0.8683
0.0925 5.0 375 0.3901 0.875
0.1014 6.0 450 0.4180 0.8817
0.0818 7.0 525 0.4236 0.8733
0.0472 8.0 600 0.4670 0.87
0.0417 9.0 675 0.5177 0.8767
0.0198 10.0 750 0.5528 0.8683
0.0232 11.0 825 0.5777 0.875
0.0159 12.0 900 0.6214 0.8683
0.0174 13.0 975 0.6477 0.87
0.0205 14.0 1050 0.7117 0.8633
0.0429 15.0 1125 0.7038 0.875
0.0098 16.0 1200 0.7398 0.8733
0.0056 17.0 1275 0.7568 0.8717
0.016 18.0 1350 0.7774 0.8733
0.0366 19.0 1425 0.7871 0.8783
0.0462 20.0 1500 0.7545 0.8867
0.0036 21.0 1575 0.8298 0.8767
0.013 22.0 1650 0.8793 0.875
0.0139 23.0 1725 0.8645 0.88
0.0044 24.0 1800 0.8813 0.8717
0.0148 25.0 1875 0.8534 0.8767
0.0146 26.0 1950 0.8817 0.8767
0.0054 27.0 2025 0.9081 0.87
0.0007 28.0 2100 0.8989 0.8767
0.0046 29.0 2175 0.8951 0.88
0.0234 30.0 2250 0.9014 0.8717
0.0106 31.0 2325 0.9119 0.8667
0.0085 32.0 2400 0.9313 0.8717
0.0036 33.0 2475 0.9195 0.8733
0.001 34.0 2550 0.9166 0.8717
0.0098 35.0 2625 0.9378 0.87
0.0089 36.0 2700 0.9278 0.8717
0.0099 37.0 2775 0.9534 0.8717
0.0248 38.0 2850 0.9419 0.8783
0.0327 39.0 2925 0.9391 0.8733
0.0223 40.0 3000 0.9364 0.875
0.0147 41.0 3075 0.9305 0.8767
0.0288 42.0 3150 0.9572 0.8783
0.0191 43.0 3225 0.9619 0.875
0.0008 44.0 3300 0.9576 0.875
0.0019 45.0 3375 0.9660 0.8733
0.0022 46.0 3450 0.9692 0.875
0.0015 47.0 3525 0.9668 0.875
0.0054 48.0 3600 0.9744 0.8733
0.0016 49.0 3675 0.9694 0.8733
0.0003 50.0 3750 0.9690 0.8733

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0