metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_beit_base_adamax_00001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8733333333333333
smids_1x_beit_base_adamax_00001_fold4
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.9690
- Accuracy: 0.8733
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3842 | 1.0 | 75 | 0.3836 | 0.8567 |
0.2698 | 2.0 | 150 | 0.3565 | 0.8717 |
0.2112 | 3.0 | 225 | 0.3725 | 0.8667 |
0.1563 | 4.0 | 300 | 0.3983 | 0.8683 |
0.0925 | 5.0 | 375 | 0.3901 | 0.875 |
0.1014 | 6.0 | 450 | 0.4180 | 0.8817 |
0.0818 | 7.0 | 525 | 0.4236 | 0.8733 |
0.0472 | 8.0 | 600 | 0.4670 | 0.87 |
0.0417 | 9.0 | 675 | 0.5177 | 0.8767 |
0.0198 | 10.0 | 750 | 0.5528 | 0.8683 |
0.0232 | 11.0 | 825 | 0.5777 | 0.875 |
0.0159 | 12.0 | 900 | 0.6214 | 0.8683 |
0.0174 | 13.0 | 975 | 0.6477 | 0.87 |
0.0205 | 14.0 | 1050 | 0.7117 | 0.8633 |
0.0429 | 15.0 | 1125 | 0.7038 | 0.875 |
0.0098 | 16.0 | 1200 | 0.7398 | 0.8733 |
0.0056 | 17.0 | 1275 | 0.7568 | 0.8717 |
0.016 | 18.0 | 1350 | 0.7774 | 0.8733 |
0.0366 | 19.0 | 1425 | 0.7871 | 0.8783 |
0.0462 | 20.0 | 1500 | 0.7545 | 0.8867 |
0.0036 | 21.0 | 1575 | 0.8298 | 0.8767 |
0.013 | 22.0 | 1650 | 0.8793 | 0.875 |
0.0139 | 23.0 | 1725 | 0.8645 | 0.88 |
0.0044 | 24.0 | 1800 | 0.8813 | 0.8717 |
0.0148 | 25.0 | 1875 | 0.8534 | 0.8767 |
0.0146 | 26.0 | 1950 | 0.8817 | 0.8767 |
0.0054 | 27.0 | 2025 | 0.9081 | 0.87 |
0.0007 | 28.0 | 2100 | 0.8989 | 0.8767 |
0.0046 | 29.0 | 2175 | 0.8951 | 0.88 |
0.0234 | 30.0 | 2250 | 0.9014 | 0.8717 |
0.0106 | 31.0 | 2325 | 0.9119 | 0.8667 |
0.0085 | 32.0 | 2400 | 0.9313 | 0.8717 |
0.0036 | 33.0 | 2475 | 0.9195 | 0.8733 |
0.001 | 34.0 | 2550 | 0.9166 | 0.8717 |
0.0098 | 35.0 | 2625 | 0.9378 | 0.87 |
0.0089 | 36.0 | 2700 | 0.9278 | 0.8717 |
0.0099 | 37.0 | 2775 | 0.9534 | 0.8717 |
0.0248 | 38.0 | 2850 | 0.9419 | 0.8783 |
0.0327 | 39.0 | 2925 | 0.9391 | 0.8733 |
0.0223 | 40.0 | 3000 | 0.9364 | 0.875 |
0.0147 | 41.0 | 3075 | 0.9305 | 0.8767 |
0.0288 | 42.0 | 3150 | 0.9572 | 0.8783 |
0.0191 | 43.0 | 3225 | 0.9619 | 0.875 |
0.0008 | 44.0 | 3300 | 0.9576 | 0.875 |
0.0019 | 45.0 | 3375 | 0.9660 | 0.8733 |
0.0022 | 46.0 | 3450 | 0.9692 | 0.875 |
0.0015 | 47.0 | 3525 | 0.9668 | 0.875 |
0.0054 | 48.0 | 3600 | 0.9744 | 0.8733 |
0.0016 | 49.0 | 3675 | 0.9694 | 0.8733 |
0.0003 | 50.0 | 3750 | 0.9690 | 0.8733 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0